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Subcritical transition in channel flows
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Certain laminar flows are known to be linearly stable at all Reynolds numbers, R,
although in practice they always become turbulent for sufficiently large R. Other
flows typically become turbulent well before the critical Reynolds number of linear
instability. One resolution of these paradoxes is that the domain of attraction for
the laminar state shrinks for large R (as Rγ say, with γ < 0), so that small but
finite perturbations lead to transition. Trefethen et al. (1993) conjectured that in fact
γ < −1. Subsequent numerical experiments by Lundbladh, Henningson & Reddy
(1994) indicated that for streamwise initial perturbations γ = −1 and −7/4 for plane
Couette and plane Poiseuille flow respectively (using subcritical Reynolds numbers
for plane Poiseuille flow), while for oblique initial perturbations γ = −5/4 and −7/4.
Here, through a formal asymptotic analysis of the Navier–Stokes equations, it is found
that for streamwise initial perturbations γ = −1 and −3/2 for plane Couette and plane
Poiseuille flow respectively (factoring out the unstable modes for plane Poiseuille flow),
while for oblique initial perturbations γ = −1 and −5/4. Furthermore it is shown why
the numerically determined threshold exponents are not the true asymptotic values.

1. Introduction
It is well known that certain laminar flows are linearly stable (i.e. stable to in-

finitesimal perturbations) at all Reynolds numbers, R, but in practice always become
turbulent for sufficiently large Reynolds number. Examples include plane Couette flow
and pipe Poiseuille flow (Romanov 1973; Davey 1973; Drazin & Reid 1981). On the
other hand, plane Poiseuille flow does exhibit a critical Reynolds number Rc ≈ 5772
(Orszag 1971) at which an unstable mode appears (the so-called Tollmien–Schlichting
wave), but in practice the transition for this flow also often occurs at much lower
Reynolds numbers. The resolution of these paradoxes is a long-standing problem in
fluid mechanics. One school of thought is that the domain of attraction of the laminar
flow shrinks as R → ∞, so that this flow is nonlinearly unstable to small but finite
perturbations. This idea goes back at least to Thomson (1887) and Orr (1907).

Almost all of the work on transition in plane Poiseuille flow is concerned with
the neutral curve (see, for example Drazin & Reid 1981). One theory of subcritical
transition is based on a weakly nonlinear analysis about this curve, as in Stuart (1960)
and Watson (1960) (see also Reynolds & Potter 1967). The Landau equation for the
amplitude of the linearly neutral solution shows that the bifurcation is subcritical,
and the position of the steady (periodic) state determines the threshold amplitude for
transition. A similar approach has been attempted for plane Couette flow, in which
the ‘bifurcation’ to a non-trivial state occurs at R = ∞ rather than a finite value of
R. Cowley & Smith (1985), Nagata (1990), Ehrenstein & Koch (1991) and Cherhabili
& Ehrenstein (1997) all look for nonlinear steady or periodic states which are close
to the laminar state, and which are seen as determining the threshold amplitude for
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transition. However, while such steady states certainly give an upper bound on the
threshold amplitude for transition, the threshold itself is determined by the stable
manifold through these states, which is an order of magnitude harder to determine
(even if we could find the ‘closest’ non-trivial solution). This point is illustrated well in
the toy model of § 2: even though the number of degrees of freedom is only increased
from one (the amplitude in the Landau equation) to two, the scaling of the threshold
amplitude differs from that of the nearest non-trivial steady state.

An alternative approach is to look directly at the initial value problem. Based on
the observation that the route to transition is invariably three-dimensional (even in
the case of plane Poiseuille flow, for which the one unstable mode is two-dimensional),
many theories look for a secondary instability of a solution of the linearized equations.
Weakly nonlinear theories have been proposed by Benney & Lin (1960) and Benney
(1961, 1964), in which two terms of an amplitude expansion are kept, with the first
term slowly decaying. The second-order term is observed to perturb the mean flow
towards an inflectional profile, which would then generate a secondary instability.
No attempt is made to relate the amplitude expansion to the Reynolds number and
thereby obtain a threshold amplitude, so that the approach remains slightly ad hoc;
the second-order terms can never perturb the mean flow enough enough to produce
instability in the asymptotic limit considered. Nevertheless, these works were among
the first to realise the importance of streamwise vorticity in redistributing momentum,
a mechanism which is a key ingredient of the present analysis, and which we will
return to shortly.

The obvious solution of the linearized equations to examine in this fashion is the
most slowly decaying mode, which gives the greatest time for instability to set in.
Orszag & Kells (1980) and Orszag & Patera (1983) examine numerically the secondary
instability of the least stable (and therefore two-dimensional) mode for plane Couette
and subcritical plane Poiseuille flow. They find that finite-amplitude two-dimensional
disturbances can become catastrophically unstable to three-dimensional perturbations.
Davey & Nguyen (1971) attempt to obtain a threshold amplitude in this way using
an ad hoc truncation of a nonlinear perturbation of the least stable mode.

However, it was later realised that there may be solutions of the linearized equations
which actually grow transiently in time before they finally decay, and that a secondary
instability of these solutions is more likely to be the optimal route to transition. Early
work (Gustavsson & Hultgren 1980; Benney & Gustavsson 1981; Gustavsson 1986;
Jang, Benney & Gran 1986; Shantini 1989) looked for an exact resonance of an
Orr–Sommerfeld and a Squire eigenvalue to achieve this transient growth.

Later it was realised that in fact exact resonance is not necessary to obtain transient
growth. The fact that the eigenfunctions of the linearized Navier–Stokes equations
are not orthogonal (i.e. the operator is non-normal) is enough to give the existence of
initial conditions which exhibit transient growth before finally decaying (Farrell 1988;
Gustavsson 1991; Henningson 1991; Butler & Farrell 1992; Henningson, Lundbladh
& Johansson 1993), and in fact there is no additional growth at an exact resonance
(Reddy & Henningson 1993). For large Reynolds number the operator is highly
non-normal, and the transient growth is asymptotically large in R. In Reddy &
Henningson (1993) and Reddy, Schmid & Henningson (1993) the non-normality of
the linearized operator is examined using pseudospectra, and linked to the transient
growth.

The idea that the small domain of attraction is caused by a ‘linear amplification
plus nonlinear mixing’ (Boberg & Brosa 1988) has been built on by Trefethen et al.
(1993), who propose simple toy models in which the conservative nonlinear terms feed
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the transient linear growth back into the system, leading to a low threshold amplitude
for transition. Various other low-dimensional models with these qualitative features
are reviewed in Baggett & Trefethen (1997).

A key question, posed in Trefethen et al. (1993), is to determine the behaviour of the
threshold amplitude for transition as a function of R as R →∞, that is, to determine
the smallest γ such that a perturbation of norm O(Rγ) may lead to transition. While
this question makes sense as it stands for plane Couette flow, which is linearly stable
for all Reynolds numbers, it requires some interpretation for plane Poiseuille flow,
for which an infinitesimal perturbation will lead to transition as R → ∞, since the
flow is linearly unstable. In that case we will factor out the unstable mode and
consider the threshold amplitude of the remaining linearly stable system. The reason
such an analysis is interesting is that while the asymptotic analysis to follow will be
based on R → ∞, we would expect that the results are qualitatively similar in the
region R < 5772 (since 5772 � 1), in which the flow is linearly stable. We expect
the small domain of attraction of the laminar state and the route to transition at
subcritical Reynolds numbers to be qualitatively similar to that of the stable part of
the system as R →∞. In fact, such an interpretation is not necessary for the periodic
flows with period independent of Reynolds number with which we will be primarily
concerned, since for them plane Poiseuille flow is linearly stable in the limit as R →∞,
because the unstable streamwise wavenumbers α on an infinite domain lie in a band
O(R−1/7) 6 α 6 O(R−1/11) (see, for example, Drazin & Reid 1981).

It was conjectured in Trefethen et al. (1993), based on their simple models, that
γ < −1, which appears to be the first conjecture on the value of the exponent. Kreiss,
Lundbladh & Henningson (1994) prove a lower bound for γ for plane Couette flow
of −21/4, while numerical experiments by Lundbladh, Henningson & Reddy (1994)
and Reddy et al. (1998) suggest that γ ≈ −5/4 for plane Couette flow and γ ≈ −7/4
for plane Poiseuille flow in a periodic domain.

In fact there are two routes to transition examined in Lundbladh et al. (1994) and
Reddy et al. (1998), which are

(i) streamwise vortices→ streamwise streaks

→ secondary instability of oblique modes,

(ii) oblique modes→ streamwise vortices→ streamwise streaks

→ secondary instability of oblique modes.

A streamwise vortex is an elongated region of vorticity approximately aligned with
the basic laminar flow, while a streamwise streak is an elongated region of relatively
high or low velocity approximately aligned with this flow. By oblique mode we
mean any perturbation not aligned with the flow, that is, a perturbation which is
streamwise dependent. In (i) the non-normality of the linearized equations means that
a small streamwise vortex produces a large streamwise streak as it decays, which then
produces a secondary oblique instability. In (ii) an initial perturbation in the form of
a pair of oblique modes grows transiently at the same time generating a streamwise
vortex. The route to transition then proceeds as in (i).

We will be concerned here with channel flows, namely plane Couette and plane
Poiseuille flow. We will determine the scaling of the threshold amplitude for the
routes (i) and (ii) to transition by using an asymptotic analysis of the Navier–Stokes
equations to quantify the qualitative ideas of Trefethen et al. (1993). We will also
determine the threshold amplitude for the alternative route to transition

(iii) streamwise vortices→ streamwise streaks→ streamwise vortices,
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Numerical experiments Asymptotic analysis

Couette Poiseuille Couette Poiseuille

Streamwise −1 −7/4 Streamwise −1 −3/2
Oblique −5/4 −7/4 Oblique −1 −5/4

Table 1. Numerically and asymptotically determined threshold exponents for initial perturbations
in the form of optimally growing streamwise vortices and optimally growing oblique modes in plane
Couette and plane Poiseuille flow with periodic boundary conditions.

in which the streamwise streaks generate streamwise vortices, closing the loop rather
than generating a secondary instability. We will find that the lowest threshold exponent
for plane Couette flow is γ = −1, which occurs for routes (i), (ii) and (iii), while that
for plane Poiseuille flow occurs via route (i), and is γ = −3/2. We will also explain
why the numerical computations mentioned above obtained different exponents (see
table 1).

We begin by introducing a low-dimensional toy model which illustrates the routes
to transition of the Navier–Stokes equations described above, and with which we are
able to explain the main ideas involved. Then, in § 3 we formulate the Navier–Stokes
equations in a convenient way for the subsequent analysis. In § 4 we determine the
nature and magnitude of the transient growth in the (stable) linearized equations.
In § 5 we show how to calculate the asymptotic position of the eigenvalues of the
linearized equations, which will enable us to determine how large a perturbation of
the base flow needs to be in order to significantly perturb these eigenvalues. In § 6 we
briefly consider the nature of the secondary instability in the oblique modes before
combining the results of §§ 4 and 5 with an examination of the nonlinear equations
in § 7, which allows us to determine the threshold amplitude exponents for transition.
In § 8 we compare our asymptotic results to the numerical results of Lundbladh et
al. (1994), Kreiss et al. (1994), Reddy et al. (1998). Finally, in § 9, we present our
conclusions.

2. Some simple toy models
We begin by illustrating the ideas involved with some simple toy models. Consider

first the two-dimensional system introduced by Trefethen et al. (1993)

dψ

dt
+ 2εψ = (φ2 + ψ2)1/2φ, (2.1)

dφ

dt
+ εφ− ψ = −(φ2 + ψ2)1/2ψ. (2.2)

The variables ψ and φ represent the input and output of a non-modal amplifier;
for our present purposes we may think of them as representing streamwise vortices
and streamwise streaks respectively in the route to transition (iii) above, though
Trefethen et al. (1993) are deliberately not so specific. The nonlinear terms represent
a conservative feedback mechanism.

Let us first consider the linearized equations. The linear system is stable but highly
non-normal in that the two eigenvectors are almost parallel. This non-normality leads
to the existence of initial conditions for which there is a large transient growth before
the final decay. An initial condition of the form (φ, ψ) = (0, εΨ ) will generate a
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Figure 1. Schematic diagram of the route to transition (iii).

transient over a timescale of order ε−1 in which φ is order one. The factor of 2 is
inserted into equation (2.1) so that the eigenvalues are distinct. In fact nothing special
happens if the eigenvalues are repeated; the scalings and transient growth are the
same. With distinct eigenvalues the transient growth is of the form e−εt− e−2εt, which
becomes εte−εt if the factor of 2 is replaced by unity. A similar phenomenon occurs
with the linearized Navier–Stokes equations: the non-normality determines the degree
of transient growth, and the resonance or not of eigenvalues is unimportant.

Based on the observation above, we rescale the equations so that ψ ∼ εφ, and we
rescale time so that we are working on the timescale for transient growth. The scale
for φ is then chosen so that the largest nonlinear term balances with the linear part
of the system. Thus we set

t = ε−1t̂, φ = ε2φ̂1, ψ = ε3ψ̂1. (2.3)

Keeping only the leading-order nonlinear terms in the new scaling the system becomes

dψ̂

dt̂
+ 2ψ̂ = φ̂|φ̂|, (2.4)

dφ̂

dt̂
+ φ̂− ψ̂ = 0. (2.5)

Now, for initial conditions (φ̂, ψ̂) = (0, Ψ̂ ) equation (2.5) generates a linear growth in

φ̂, as ψ̂ decays, which couples back nonlinearly into ψ̂ through equation (2.4). This
mechanism is illustrated schematically in figure 1, in which a single arrow represents
a linear mechanism, while a double arrow represents a nonlinear mechanism. If Ψ̂ is
sufficiently large the solution will not converge to the origin (representing the laminar
state) but to another stationary point (representing transition). Thus, from (2.3), the
threshold amplitude for transition in this model is O(ε3).

This simple model also serves to illustrate the point made in the introduction about
the relationship between non-trivial steady states and threshold amplitudes. The
existence of a threshold amplitude in (2.4)–(2.5) is due to the non-trivial stationary

points φ̂ = ψ̂ = ±2. However, knowing that this solution exists is not enough to
determine the threshold amplitude, since the threshold is determined by the stable
manifold through this stationary point. In particular, this stationary point lies a
distance O(ε2) from the origin (the scaling on φ), while the threshold amplitude is

O(ε3) (since an initial perturbation with φ̂ = 0 and ψ̂ sufficiently large will lead to
transition).

Although this toy model illustrates many of the features of transition through
route (iii), we will find when we consider the Navier–Stokes equations in § 4 that
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the nonlinear coupling between streamwise streaks and streamwise vortices is much
weaker than that given by (2.1)–(2.2); in fact the nonlinear terms are multiplied by a
factor of ε2, so that the threshold amplitude for transition is only O(ε).

It turns out that the dominant routes to transition are (i) and (ii). A simple toy
model which illustrates these routes to transition is the four-dimensional system

dψ1

dt
+ 2εψ1 = φ2

2, (2.6)

dφ1

dt
+ εφ1 − ψ1 = 0, (2.7)

dψ2

dt
+ 2δψ2 = φ1φ2, (2.8)

dφ2

dt
+ δφ2 − ψ2 = 0. (2.9)

Here φ1 and ψ1 represent streamwise streaks and streamwise vortices respectively,
while φ2 and ψ2 represent all the oblique modes.

The linearized equations decouple into a pair of stable, non-normal two-dimensional
systems of the form (2.1)–(2.2); the first has transient growth of order ε−1 over a
timescale ε−1, while the second has transient growth of order δ−1 over a timescale
δ−1. We assume that 0 < ε � δ � 1; we will find that this is the case for the
Navier–Stokes equations.

The nonlinear terms have been simplified (based on the observation above that the
important feedback is through φ), and are chosen to be consistent with the coupling
between streamwise and oblique modes: the product of two non-zero-wavenumber
(oblique) modes may give a zero-wavenumber (streamwise) mode, while the product
of a zero-wavenumber mode and a non-zero-wavenumber mode gives a non-zero-
wavenumber mode.

We rescale the equations so that ψ1 ∼ εφ1 and ψ2 ∼ δφ2. The scales for φ1 and
φ2 are chosen so that the nonlinear terms balance with the linear part of each two-
dimensional system. We also scale time so that we are working on the shorter of the
two timescales. Thus we set

t = δ−1t̂, φ1 = δ2φ̂1, ψ1 = εδ2ψ̂1, φ2 = εδφ̂2, ψ2 = εδ2ψ̂2. (2.10)

In the new scaling the system becomes(
δ

ε

)
dψ̂1

dt̂
+ 2ψ̂1 = φ̂2

2, (2.11)

(
δ

ε

)
dφ̂1

dt̂
+ φ̂1 − ψ̂1 = 0, (2.12)

dψ̂2

dt̂
+ 2ψ̂2 = φ̂1φ̂2, (2.13)

dφ̂2

dt̂
+ φ̂2 − ψ̂2 = 0. (2.14)

Now, on this short timescale we see from (2.11), (2.12) that to leading order dφ̂1/dt̂ =

dψ̂1/dt̂ = 0, so that φ̂1 and ψ̂1 are constant. The system for the remaining variables



Subcritical transition in channel flows 41

is then linear, with eigenvalues given by

λ = −1± (φ̂1)
1/2. (2.15)

For Re((φ̂1)
1/2) > 1 one eigenvalue has positive real part, corresponding to an oblique

mode instability. For Re((φ̂1)
1/2) < 1 both eigenvalues have negative real part, and

the oblique modes decay to zero. Let us now determine the scaling of the threshold
amplitude for initial conditions in the form of streamwise vortices and in the form of
oblique modes.

We consider first the route to transition (i), which requires an initial perturbation
in the form of streamwise vortices, corresponding to an initial condition of the form

(φ̂1, ψ̂1, φ̂2, ψ̂2) = (0, Ψ̂1, 0, 0). Since φ̂1 and ψ̂1 evolve over the long timescale t̂ ∼ δ/ε,
we first rescale time with δ/ε to give

dψ̂1

d̃t
+ 2ψ̂1 = φ̂2

2, (2.16)

dφ̂1

d̃t
+ φ̂1 − ψ̂1 = 0, (2.17)( ε

δ

) dψ̂2

d̃t
+ 2ψ̂2 = φ̂1φ̂2, (2.18)

( ε
δ

) dφ̂2

d̃t
+ φ̂2 − ψ̂2 = 0, (2.19)

where t̂ = (δ/ε)̃t. Since initially Re((φ̂1)
1/2) < 1 if there were any oblique modes they

would decay quickly to zero. Thus we are left with the stable linear system

dψ̂1

d̃t
+ 2ψ̂1 = 0, (2.20)

dφ̂1

d̃t
+ φ̂1 − ψ̂1 = 0, (2.21)

for φ̂1 and ψ̂1. Now our initial condition of the form (φ̂1, ψ̂1) = (0, Ψ̂1) will give tran-

sient growth in φ̂1 while ψ̂1 decays to zero (streamwise vortices producing streamwise

streaks). If this transient growth is enough to take Re((φ̂1)
1/2) above unity, then the

system for φ̂2, ψ̂2 becomes unstable on a short timescale. An infinitesimal perturbation
of this system has exponential growth with a rate of order δ/ε on the long timescale

over which φ̂1 and ψ̂1 are decaying. Such a perturbation will therefore quickly become

order one, the nonlinear terms in (2.16) ‘kick in’ to keep φ̂1 above unity, and the
feedback leads to transition away from the zero state. Thus an order-one ψ̂1 is enough
to induce transition, so that, by (2.10), the threshold amplitude for streamwise vortices
is O(εδ2). This route to transition is shown schematically in figure 2.

Let us now consider the route to transition (ii), requiring an initial condition in

the form of oblique modes, (φ̂1, ψ̂1, φ̂2, ψ̂2) = (0, 0, 0, Ψ̂2). On the short timescale t̂ ∼ 1

over which ψ̂2 decays there will be transient growth in φ̂2. However, in the present
scaling, during this transient growth phase the nonlinear terms in (2.11) generate a
streamwise vortex ψ̂1 only of order ε/δ, whereas we have seen that a streamwise
vortex ψ̂1 of order one is required for transition to occur. In order to generate a
streamwise vortex of order one from an oblique mode, the nonlinear terms in (2.11)
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Figure 2. Schematic diagram of the route to transition (i).

must therefore of order δ/ε so that they balance with dψ̂1/dt̂. Hence we must rescale

φ2 = εδφ̂2 = ε1/2δ3/2φ̃2, (2.22)

ψ2 = εδ2ψ̂2 = ε1/2δ5/2ψ̃2, (2.23)

to give, on the short timescale

dψ̂1

dt̂
= φ̃2

2, (2.24)

dφ̂1

dt̂
= 0, (2.25)

dψ̃2

dt̂
+ 2ψ̃2 = φ̂1φ̃2, (2.26)

dφ̃2

dt̂
+ φ̃2 − ψ̃2 = 0. (2.27)

Now an initial perturbation in the form of an oblique mode will generate an order-
one streamwise vortex as it decays, which will then generate an order-one streamwise
streak and the route to transition proceeds as above. Hence the threshold amplitude
for an initial perturbation comprising oblique modes is O(ε1/2δ5/2). This route to
transition is shown schematically in figure 3.

Notice that during each phase of the transition (until the nonlinear evolution of
the fully developed secondary oblique mode instability) we only have to solve linear
equations. During the first phase of the transient growth of oblique modes we have
the linear system (2.26)–(2.27) (remember that the right-hand side of (2.26) is zero
during this phase). Then φ̃2 is known, so that (2.24) is a forced linear equation for
ψ̂1. During the next phase we have the linear system (2.20)–(2.21) to describe the

evolution of φ̂1 and ψ̂1. Finally, the secondary oblique-mode instability is described

by (2.13)–(2.14), which is a linear system for φ̂2, ψ̂2, since φ̂1 is known.
This scenario of transition, being governed by a series of (possibly forced) linear
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Figure 3. Schematic diagram of the route to transition (ii).

equations, persists when we consider the full Navier–Stokes equations, as do the
routes to transition described above.

3. Formulation of the equations
Our starting point is of course the (dimensionless) incompressible Navier–Stokes

equations

ut + u · ∇u = −∇p+
1

R
∇2u, (3.1)

∇ · u = 0, (3.2)

with u given on y = ±1, where u is the fluid velocity, p is the pressure, and R is the
Reynolds number. Taking the curl of (3.1) gives

ωt + curl(ω ∧ u) =
1

R
∇2ω, (3.3)

where

ω = curl u (3.4)

is the vorticity. Let the laminar state whose stability we are examining be given by
u = (U(y), 0, 0) (we will be particularly interested in the cases U = y corresponding
to plane Couette flow and U = 1 − y2 corresponding to plane Poiseuille flow, but
in general U may be any quadratic function of y). We set u = (U, 0, 0) + (u, v, w),
ω = (0, 0,−U ′) + (ξ, η, ζ). Then the system (3.2)–(3.4) becomes

ξt − (ηU)y + uzU
′ − ζzU − 1

R
(ξxx + ξyy + ξzz) = −(ξv − ηu)y + (−ξw + ζu)z, (3.5)
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ηt + ηxU + vzU
′ − 1

R
(ηxx + ηyy + ηzz) = (ξv − ηu)x − (ηw − ζv)z, (3.6)

ζt − uxU ′ + ζxU − (vU ′)y − 1

R
(ζxx + ζyy + ζzz) = −(−ξw + ζu)x + (ηw − ζv)y, (3.7)

ux + vy + wz = 0, (3.8)

ξ = wy − vz, (3.9)

η = −wx + uz, (3.10)

ζ = vx − uy, (3.11)

with (u, v, w) = 0 on y = ±1. Now, if we take the z-derivative of (3.5) and subtract
the x-derivative of (3.7) we find

−∇2vt −U∇2vx +U ′′vx +
1

R
∇4v = −(ξv − ηu)yz + (−ξw + ζu)zz

+(−ξw + ζu)xx − (ηw − ζv)yx. (3.12)

Equations (3.6) and (3.12) are convenient in that the linearized equations (Thomson
1887; Squire 1933)

−∇2vt −U∇2vx +U ′′vx +
1

R
∇4v = 0, (3.13)

ηt + ηxU + vzU
′ − 1

R
∇2η = 0 (3.14)

involve only v and η. If we decompose these into Fourier modes†
v =

∑
vαβ(y)eiαx+iβz, (3.15)

η =
∑

ηαβ(y)eiαx+iβz, (3.16)

etc., we find

L
αβ
1 v

αβ ≡ −vαβyyt + k2v
αβ
t − iαU(vαβyy − k2vαβ) + iαU ′′vαβ

+
1

R
(vαβyyyy − 2k2vαβyy + k4vαβ) = 0, (3.17)

L
αβ
2 (ηαβ, vαβ) ≡ ηαβt + iαUηαβ + iβU ′vαβ − 1

R
(ηαβyy − k2ηαβ) = 0, (3.18)

where k2 = α2 + β2. Equations (3.8)–(3.11) give the Fourier components of the other
variables as

uαβ =
i

k2
(αvαβy − βηαβ), (3.19)

wαβ =
i

k2
(αηαβ + βvαβy ), (3.20)

ξαβ =
i

k2
(αηαβy + βvαβyy )− iβvαβ, (3.21)

ζαβ = − i

k2
(αvαβyy − βηαβy ) + iαvαβ. (3.22)

† The description here assumes we are imposing periodic boundary conditions in x and z. If we
are instead working on an infinite domain, for Fourier series read Fourier transform, and for the
sums in (3.23), (3.24) read integrals.
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We find that equations (3.12) and (3.6) become

L
αβ
1 (vαβ) =

∑
α1+α2=α
β1+β2=β

N
α1β1α2β2

1 (vα1β1 , ηα1β1 , vα2β2 , ηα2β2 ), (3.23)

L
αβ
2 (ηαβ, vαβ) =

∑
α1+α2=α
β1+β2=β

N
α1β1α2β2

2 (vα1β1 , ηα1β1 , vα2β2 , ηα2β2 ), (3.24)

where the nonlinear terms on the right-hand side of (3.23) are of the form vvyyy , vyvyy ,
ηvyy , vηyy , ηyvy , vvy , ηηy and ηv, while the nonlinear terms on the right-hand side of
(3.24) are of the form η2, vvyy , vηy and ηvy; both N1 and N2 are given explicitly in
Appendix A.

From (3.19), (3.20) the boundary conditions u = v = w = 0 give vαβ = vαβy = ηαβ = 0
on y = ±1. Thus our system (3.23), (3.24) is written in terms of v and η only. Although
this system seems very complicated we will find that for most of the analysis we are
interested only in the linearized equations, and when we do move on to consider the
nonlinear terms all that is needed is to estimate their order of magnitude.

We are mainly interested in the threshold amplitudes for transition for the case of
periodic boundary conditions in x and z, with period lx and lz respectively, which we
take to be of order one as R →∞. We will briefly consider how the non-periodic case
differs from this in § 7.3.

In the periodic case it is useful to separate the streamwise modes (with zero stream-
wise wavenumber) from the oblique modes (with non-zero streamwise wavenumber),
so that (3.23), (3.24) become

L0m
1 v

0m =
∑

n1+n2=0
m1+m2=m

Nn1m1n2m2

1 (vn1m1 , ηn1m1 , vn2m2 , ηn2m2 ), (3.25)

L0m
2 (η0m, v0m) =

∑
n1+n2=0
m1+m2=m

Nn1m1n2m2

2 (vn1m1 , ηn1m1 , vn2m2 , ηn2m2 ), (3.26)

Lnm1 v
nm =

∑
n1+n2=n
m1+m2=m

Nn1m1n2m2

1 (vn1m1 , ηn1m1 , vn2m2 , ηn2m2 ), (3.27)

Lnm2 (ηnm, vnm) =
∑

n1+n2=n
m1+m2=m

Nn1m1n2m2

2 (vn1m1 , ηn1m1 , vn2m2 , ηn2m2 ), (3.28)

where without risk of confusion we have replaced the superscript α = 2πn/lx, β =
2πm/lz with the superscript nm. Equations (3.25) and (3.26) correspond to equations
(2.6) and (2.7) of the toy model in § 2, while equations (3.27) and (3.28) correspond
to equations (2.8) and (2.9). The reason for the choice of the nonlinear terms in
(2.6)–(2.9) now becomes clear: products of oblique modes appear on the right-hand
side of (3.25) and (3.26), while streamwise modes appear on the right-hand side of
(3.27) and (3.28) only as a product with an oblique mode.

The natural separation between streamwise and oblique modes occurs because, as
we shall see in § 4, the timescale for the evolution of streamwise modes in (3.25) and
(3.26) is R (so that ε of § 2 is R−1), while that for the evolution of the oblique modes
in (3.27) and (3.28) is R1/3 (so that δ of § 2 is R−1/3).

We need to choose a norm with which to measure the amplitude of a solution.
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We will consider both the L∞ norm, which measures the maximum amplitude of the
perturbation

‖u‖∞ = max
x,y,z
{|u|, |v|, |w|}, (3.29)

and the L2 or energy norm, which measures the total energy of the perturbation, and
for periodic solutions is

‖u‖2 =

(
1

2V

∫
period in x,z

∫ 1

−1

(u2 + v2 + w2) dy dx dz

)1/2

, (3.30)

where V is the volume of integration. For a single mode, using (3.19), (3.20), these
become

‖u‖∞ = max
x,y,z

{
1

k2

∣∣∣∣αdvαβ

dy
− βηαβ

∣∣∣∣ , |vαβ |, 1

k2

∣∣∣∣β dvαβ

dy
+ αηαβ

∣∣∣∣}
and

‖u‖2 =

(
1

8k2

∫ 1

−1

((
dvαβ

dy

)2

+ k2(vαβ)2 + (ηαβ)2

)
dy

)1/2

.

In fact for the solutions we are interested in we will find that both these norms scale
in the same way.

There are four steps that we need to complete in order to calculate the threshold
amplitude for transition, namely we need to know

(i) how much transient growth there is in streamwise modes;
(ii) how much transient growth there is in oblique modes;
(iii) how large a streamwise vortex is produced during the growth and decay of an

oblique mode;
(iv) how large a streamwise streak has to grow in order to produce a secondary

instability.
In the next section we will investigate (i) and (ii). In § 5 we consider (iv), by examining
the eigenvalues and eigenfunctions of the linearized equations asymptotically as
R → ∞. Then, in § 7, we consider (iii), and combine the four results to determine the
threshold amplitudes for transition.

4. Transient growth of the linearized equations
We need to calculate the transient growth of the linearized system

−
(
∂2

∂y2
− k2

)
∂v

∂t
= −

(
∂2

∂y2
− k2

)2
v

R
+ iαU

(
∂2

∂y2
− k2

)
v − iα

d2U

dy2
v, (4.1)

∂η

∂t
= −iβ

dU

dy
v − iαUη +

(
∂2

∂y2
− k2

)
η

R
, (4.2)

with boundary conditions

v(±1, t) = 0, (4.3)

∂v

∂y
(±1, t) = 0, (4.4)

η(±1, t) = 0, (4.5)

where k2 = α2 + β2, and we have dropped the superscript αβ for ease of notation.
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If the period in x is finite as R → ∞ there are two cases to consider, namely the
streamwise mode α = 0, and the oblique modes α 6= 0.

On an infinite domain the relevant cases to consider are α = O(1/R) and α� 1/R;
we refer to the former as the streamwise modes (even though they vary slowly with
position down the channel) and the latter as the oblique modes.

4.1. Transient growth of streamwise modes

We set α = ᾱ/R with ᾱ of order one. Then both (4.1) and (4.2) give evolution on a
long timescale of order R, so we also rescale time by setting t = Rt̄, giving

−(vyy − β2v)̄t − iᾱU(vyy − β2v) + iᾱU ′′v + vyyyy − 2β2vyy + β4v = 0, (4.6)

ηt̄ + iᾱUη + iRβU ′v − (ηyy − β2η) = 0. (4.7)

Neither equation is now singularly perturbed, so that both v and η will vary on an
order-one lengthscale. From (4.7) we see that the correct relative scaling of η and v is
η = O(Rv). Hence an initial condition of the form (v, η) = (v0, 0) will have transient
growth in η to order Rv0 (so that there is growth in the norm of the solution by a
factor of order R) over a timescale of order R.

We are now in a position to calculate the threshold amplitude for the transition
mechanism (iii) involving only streamwise modes. If we consider the nonlinear terms
in (A 1) we see that each is of order v2, α2η2 or αvη, while the largest nonlinear term
in (A 2) is of order αη2. Hence in (3.23) the nonlinear terms are of order v2

0 , while
the linear part of the equation is of order v0/R. Thus the smallest scaling of v0 which
allows the nonlinear terms to play a role is v0 = O(R−1). In (3.24) the nonlinear terms
are of order Rv2

0 , but the linear part of the equation is of order v0, which again gives
a threshold amplitude of order R−1. Thus the threshold amplitude for a transition
involving only streamwise modes is O(R−1) in the L∞ norm. Since these modes vary
on an order-one lengthscale in y, the threshold norm for periodic solutions is also
O(R−1).

This threshold amplitude for a purely streamwise transition is effectively contained
in Benney & Chow (1985), although it is not mentioned explicitly, and they consider
the interaction of only two modes in the crosswise direction, z.

The reason the threshold is so large even though there is very strong transient
growth of the linearized equations is the weak mutual interaction between streamwise
modes, because of the factor of α2 on the right-hand side of (3.23). Much stronger
coupling occurs between streamwise modes and oblique modes. Oblique modes also
exhibit linear transient growth, but it is much weaker than for streamwise modes. Let
us now examine the transient growth of oblique modes.

4.2. Transient growth of oblique modes

4.2.1. wkb analysis of long-time behaviour

With αR�1 and the natural wkb ansatz v = αA exp((αR)1/2φ), η = B exp((αR)1/2φ),
the natural timescale on which to consider long-time behaviour is t = α−1(αR)1/2t̄,
giving

(αR)−1/2vyyt̄−k2(αR)−1/2vt = (αR)−1(vyyyy−2k2vyy+k4v)− iU(vyy−k2v)+iU ′′v, (4.8)

(αR)−1/2ηt̄ = −iβU ′v − iUη + (αR)−1(ηyy − k2η), (4.9)

so that at leading order

(φy)
2φt̄ = (φy)

4 − iU(φy)
2, (4.10)
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Bφt̄ = −iβA− iUB + B(φy)
2. (4.11)

However, we see immediately that (4.10), (4.11) imply A = 0, which implies that our
scaling for v is incorrect. We must set instead v = α(αR)−1/2A exp((αR)1/2φ), so that
A will appear at the next order in the expansion of the equation for η. This happens
because with the wkb ansatz η satisfies the same equation as vyy to leading order,
which is another manifestation of non-normality.

Writing p = φy , q = φt, the eikonal equation (4.10) is

q − p2 + iU = 0, (4.12)

for which Charpit’s equations are

ẏ = −2p, ˙̄t = 1, ṗ = −iU ′, q̇ = 0, φ̇ = −2p2 + q,

with initial data

y0 = s, t0 = 0, p0 = φ′0, q0 = (φ′0)
2 − iU(s),

and solution

q = (φ′0)
2 − iU(s), (4.13)

t̄ = τ, (4.14)

p = φ′0 − iU ′(s)τ, (4.15)

y = −2φ′0τ+ iU ′(s)τ2 + s, (4.16)

φ = φ0 − iU(s)τ− (φ′0)
2τ+ 2iU ′(s)φ′0τ

2 +
2U ′(s)2τ3

3
. (4.17)

Since we are considering subcritical transition, we are interested in parameter values
for which all the eigenvalues of (4.1) have negative imaginary part, so that for large
times the solution must decay, i.e. Re(φ) → −∞ as t̄ → ∞. The question is to
determine the maximum extent of any transient growth. If Re(φ) > Re(φ0) for small
times then there is exponentially large transient growth. Expanding the wkb solution
for small times we find

φ ∼ φ0(y) + t̄((φ′0)
2 − iU) + t̄ 2φ′0(2φ

′
0φ
′′
0 − iU ′)

+ 1
3
t̄3(−(U ′)2 − 6iU ′φ′0φ

′′
0 + 12(φ′0)

2(φ′′0)2 + 4(φ′0)
3φ′′′0 ) + · · · . (4.18)

Now the norm of the solution is determined by the maximum value of Re(φ0).
Supposing that this is at y = y0, there are two cases to consider.

Suppose first that there is an internal maximum in the solution, so that there is a
saddle point of φ0 + φ̄0 at y0, where φ̄0 is the complex conjugate of φ0. Then

φ′0(y0) + φ̄′0(y0) = 0,

so that φ′0(y0) is pure imaginary. Hence the real part of the coefficient of t̄ in (4.18)
is negative, giving exponential decay on an O(α−1) timescale (since t̄(αR)1/2 = O(1)⇒
t = O(α−1)), unless φ′0(y0) = 0. In this case the coefficient of t̄ 2 is also zero, so that the
norm is determined by the t̄ 3 term, which is −(U ′)2/3. The solution still ultimately
decays, but now over a longer timescale α−1(αR)1/3 (since t̄ 3(αR)1/2 = O(1) ⇒ t =
O(α−1(αR)1/3)).

Now suppose that the maximum occurs at an endpoint. In this case, in the ray
solution (4.13)–(4.17) we have to be careful that we do not include irrelevant rays
originating from the analytic continuation of the solution outside the domain, which
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may lead to spurious exponential growth†. However, when the solution is dominated
by the endpoint we may do a local analysis in its vicinity, and the solution will be a
collection of wall modes (which we will discuss in § 5). These have eigenvalues with
imaginary part O(α(αR)−1/3), and have transient growth on this timescale, but only
exponential decay on the timescale of α−1(αR)1/2.

In either case we see that on the timescale of α−1(αR)1/2 there is no transient growth,
only exponential decay. The best we can hope for is to make this decay as slow as
possible, giving a chance for some algebraic transient growth. Suppose therefore, from
the discussion earlier, that φ′0(y0) = 0, so that for small times

v ∼ A exp(−(αR)1/2t̄3(U ′)2/3).

To observe the algebraic growth we should rescale t̄ with (αR)−1/6 so that the new
timescale is given by t = α−1(αR)1/3t̃. Thus we are led to the following key parameter
regime:

4.2.2. Transient growth on the timescale of α−1(αR)1/3

With t = α−1(αR)1/3t̃ we have

(αR)−1/3vyyt̃−k2(αR)−1/3vt̃ = (αR)−1(vyyyy−2k2vyy+k4v)−iU(vyy−k2v)+iU ′′v, (4.19)

(αR)−1/3ηt̃ = −iβα−1U ′v − iUη + (αR)−1(ηyy − k2η). (4.20)

As before, v is an order of magnitude smaller than η, so we set v = α(αR)−1/3

A exp((αR)1/3φ), η = B exp((αR)1/3φ). Then at leading order the eikonal equation is
φt̃ = −iU. Hence

φ = φ0(y)− iUt̃. (4.21)

The amplitude equations for A and B are

(φy)
2At̃ − 2φyiU

′A − (φy)
4A = (αR)−1/3(−2iU ′Ay − 4(φy)

3Ay

+2φyAyt̃ + φyyAt̃ − 6(φy)
2φyyA) + O((αR)−2/3), (4.22)

Bt̃ − (φy)
2B + iβU ′A = (αR)−1/3(−2φyBy − φyyB) + O((αR)−2/3). (4.23)

At leading order we have

φyAt̃ = 2iU ′A+ (φy)
3A, (4.24)

Bt̃ = (φy)
2B − iβU ′A. (4.25)

Let τ = U ′̃t+ iφ′0(y), so that φy = −iτ. Then

U ′(Aτ2)τ = −τ4A, (4.26)

U ′Bτ = −τ2B − iU ′A. (4.27)

Hence

A =
a0(y) exp(−τ3/(3U ′))

τ2
, (4.28)

B =

(
iβa0(y)

τ
+ b0(y)

)
exp(−τ3/(3U ′)). (4.29)

† In fact there will be ‘diffracted’ rays fanning out from each endpoint, and these will determine
which rays from the analytically continued boundary should be included via Stokes’ phenomenon,
as described in Chapman et al. (1999). This is also true away from the endpoints when we consider
order-one t̄ rather than small t̄ as above.
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Now, A and B blow up as τ→ 0. The growth is capped when the lower-order terms on
the right-hand side of (4.22) become as large as the leading-order terms which were
retained in (4.24), and therefore cease to be negligible. Let us calculate asymptotically
how close τ needs to be to zero for this to happen.

As τ → 0, the dominant terms on the left-hand side of (4.22) are of order 1/τ.
The point at which the blow-up occurs is the value of y0 ∈ [−1, 1] which leads to
the smallest real value of −iφ′0(y0)/(αU

′(y0)), which is the blow-up time t̃0. Now,
if φ′′0(y0)U

′(y0) 6= φ′0(y0)U
′′(y0) then φyy(y0) does not tend to zero as t̃ → t̃0. The

right-hand side of (4.22) is then of order (αR)−1/3/τ3 as τ → 0. Hence the neglected
terms become important when τ = (αR)−1/6, so that the growth in A is capped at
(αR)1/3 and in B at (αR)1/6. However, if φ′′0(y0)U

′(y0) = φ′0(y0)U
′′(y0) then φyy is order

τ as τ → 0, and the right-hand side of (4.22) is of order (αR)−1/3/τ2. In this case
the neglected terms become important when τ = (αR)−1/3, so that the growth in A is
capped at (αR)2/3 and in B at (αR)1/3.

Thus there is algebraic transient growth on a timescale of order α−1(αR)1/3. Note,
though, that this transient growth is not of the form tme−t, as would be expected
from a degenerate eigenvalue (that is, a repeated eigenvalue with multiplicity higher
than the dimension of its eigenspace), nor of the form e−t − e−2t, which would be
expected from a pair of almost parallel eigenvectors, as in the toy model of § 2. The
functions v and η stay of order α(αR)−1/3 and order one respectively for a time of
order α−1(αR)1/3, then suddenly, over a short (i.e. O(α−1)) time, they grow to be orders
α(αR)1/3 and (αR)1/3 respectively.

Interpreting the transient growth in terms of eigenfunctions requires us to consider
not one or two but all the eigenfunctions. The transient growth occurs because the
terms in the eigenfunction expansion suddenly all come into phase. The effect may
be illustrated by considering the sum∑

n

ane
iλnt,

for a set of ‘eigenvalues’ λn which become dense on a line, so that in the limit we
have the approximation ∫

a(λ)eiλtdλ.

Now if we choose a(λ) = e−iλt0 then∫
a(λ)eiλt dλ ∼ 1

i(t− t0) ,
and there is a blow-up as all the ‘eigenfunctions’ come into phase at t = t0.

We have seen that the maximum growth in A and B occurs when φ′′0(y0)U
′(y0) =

φ′0(y0)U
′′(y0). However, to compare with numerical results it is interesting to calculate

the energy norm of the solution. Before the blow-up time we have

v ∼ α(αR)−1/3 a0(y) exp(−(iφ0 +U ′t̂)3/(3U ′))
(iφ′0 +U ′t̂)2

exp((αR)1/3(φ0 − iUt̂)), (4.30)

with

v ∼ −α(αR)−1/3 a0(y) exp(iφ3
0/(3U

′))
(φ′0)2

exp((αR)1/3φ0) (4.31)

initially. First, suppose the initial phase φ0 is such that φ0 + φ̄0 has a saddle point at
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Figure 4. Numerically determined initial condition leading to maximal growth for plane Couette
flow with α = β = 1, R = 10 000. The inner lines show the real part of the function, while the
outer lines show its absolute value. The linearized equations were solved in MATLAB using codes
written by Satish Reddy based a Chebyshev hybrid spectral discretization, as described in Reddy &
Henningson (1993) and Reddy et al. (1993). The initial condition leading to the maximum transient
growth was determined through a singular value decomposition of exp(At∗), where the linearized
system is yt = Ay, and t∗ is the time at which the norm of exp(At) is maximum.

y0 which dominates the L2 norm of v, and that φ0(y)−φ0(y0) ∼ ia(y−y0)+ib(y−y0)
2

−c(y−y0)
2n as y → y0, with a and b real and c not pure imaginary. When performing

the method of steepest descents on the L2 norm of the initial condition the dominant
contribution comes from a region y − y0 = O((αR)−1/(6n)), giving an L2 norm of v of
order (αR)−1/(6n) times the L∞ norm. Now the denominator of v at the blow-up time
looks like ((U ′′(y0)̃t0 − 2b)(y − y0)− 2nci(y − y0)

2n−1)2 as y → y0. To maximize the L2

norm we need to maximize the region over which the denominator is of the order of
(αR)−2/3 (which is the cap as we have seen). Hence we should choose b = U ′′(y0)̃t0/2,
giving y − y0 = O((αR)−1/(6n−3)). Hence the maximum L2 norm of v is of the order
of (αR)−1/(6n−3) times the maximum L∞ norm. Thus we conclude that the growth in
the L2 norm is less than that in the L∞ norm if the L2 norm of v is dominated by a
saddle point of φ0 + φ̄0.

However, we can achieve the same growth in the L2 norm as in the L∞ norm if we
take φ0 to be pure imaginary so that the norm of v is not dominated by a particular
y0, but each y contributes equally. Then, clearly, to maximize the growth we need the
blow-up times of all points y to be the same, so that A → ∞ for all y as t̃ → t̃0.
Hence, for maximal growth, we should choose φ0 = ĩt0U, where t̃0 is real. Even more
importantly, we will see later that choosing φ0 to be pure imaginary also gives the
maximum nonlinear coupling between oblique modes and streamwise modes.

In figure 4 we show the numerically determined initial condition leading to the
maximum transient growth in plane Couette flow for the case α = β = 1, R = 10 000.
The outer lines show the absolute value of the function, while the inner line shows its
real part. In figure 5 we show the phase of the solution by plotting (αR)−1/3 Im(log(v))
and (αR)−1/3 Im(log(η)). We also plot U = y for reference; we see that the numerically
determined maximal initial condition is close to the asymptotic one. In figure 6 we
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Figure 5. Numerically determined phase of the initial condition leading to maximal growth for
plane Couette flow with α = β = 1, R = 10 000.
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Figure 6. Numerically determined phase of the initial condition leading to maximal growth for
plane Couette flow with α = β = 1, R = 10 000, divided by the asymptotically determined value U.
The ratio should be the constant t̃0.

show (αR)−1/3 Im(log(v))/U and (αR)−1/3 Im(log(η))/U; we see that in this case t̃0 is
very close to unity. However, its precise value is not important for determining the
scaling of the threshold amplitude.

4.2.3. Evolution through the blow-up time

Let us now consider the complete evolution of the solution with an initial condition
of the form φ0 = ĩt0U, including the transition through the blow-up region. For times
0 6 t̃ < t̃0 we have

v ∼ α(αR)−1/3 a0(y) exp(−(U ′)2(̃t− t̃0)3/3)

(U ′)2(̃t− t̃0)2
exp(iU(αR)1/3(̃t0 − t̃)), (4.32)

η ∼
(

iβa0(y)

U ′(̃t− t̃0) + b0(y)

)
exp(−(U ′)2(̃t− t̃0)3/3) exp(iU(αR)1/3(̃t0 − t̃)). (4.33)
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We have seen that the growth should be capped when t̃− t̃0 = O((αR)−1/3). We use the
method of matched asymptotic expansions to examine the evolution for t̃ close to t̃0.
We set t̃ = t̃0 + t̂(αR)−1/3, v = α(αR)1/3v̂, and η = (αR)1/3η̂. In (4.19), (4.20) this gives

v̂yyt̂ − k2v̂t̂ = (αR)−1(v̂yyyy − 2k2v̂yy + k4v̂)− iU(v̂yy − k2v̂) + iU ′′v̂, (4.34)

η̂t̂ = −iβU ′v̂ − iUη̂ + (αR)−1(η̂yy − k2η̂). (4.35)

Matching with the ‘outer’ solution (4.32)–(4.33) gives the conditions

v̂ ∼ a0(y)

(U ′)2t̂2
e−iUt̂, (4.36)

η̂ ∼ iβa0(y)

U ′t̂
e−iUt̂ (4.37)

as t̂ → −∞. Note that v and η cease to oscillate rapidly in y as they reach their
maximum.

Now, to leading order in (4.34)–(4.35)

v̂yyt̂ − k2v̂t̂ = −iU(v̂yy − k2v̂) + iU ′′v̂, (4.38)

η̂t̂ = −iβU ′v̂ − iUη̂. (4.39)

If v̂ was known, we could solve (4.39) for η̂ to give

η̂ = −iβU ′e−iUt̂

∫ t̂

−∞
v̂eiUt̂ dt̂. (4.40)

Note that using (4.36) we have

η̂ ∼ iβU ′e−iUt̂ a0(y)

(U ′)2t̂
,

as t̂→ −∞, in agreement with (4.37). As t̂→∞ we have

η̂ ∼ −iβU ′e−iUt̂

∫ ∞
−∞
v̂eiUt̂ dt̂. (4.41)

Unfortunately it is difficult to solve (4.38) for the case of plane Poiseuille flow.
However, for plane Couette flow we can solve (4.38) analytically.

4.2.4. Inner solution for plane Couette flow

With U = y we may write (4.38) as

ξt̂ = −iyξ, (4.42)

where ξ = v̂yy − k2v̂. Hence

ξ = ξ0(y)e−iyt̂, (4.43)

giving

v̂yy − k2v̂ = ξ0(y)e−iyt̂, (4.44)

whence

v̂ =

∫ y

−1

sinh k(x+ 1) sinh k(y − 1)

k sinh 2k
ξ0(x)e−ixt̂ dx

+

∫ 1

y

sinh k(x− 1) sinh k(y + 1)

k sinh 2k
ξ0(x)e−ixt̂ dx.
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Integrating by parts as t̂→ −∞ gives

v̂ ∼ −ξ0(y)e−iyt̂

t̂2
. (4.45)

Hence

ξ0(y) = −a0(y). (4.46)

The same argument works as t̂→∞ to give

v̂ ∼ a0(y)

t̂2
e−iyt̂. (4.47)

Hence, although v reaches a maximum of order α(αR)1/3, it holds this order only
for a short (order-one) time. Once we are back into the outer region t̂ = O((αR)1/3),
t̃ = O(1), v is again of order α(αR)−1/3. However, from (4.41) we have

η̂ ∼ −iβe−iyt̂

∫ ∞
−∞
v̂eiyt̂ dt̂ (4.48)

∼ η0(y)e−iyt̂ (4.49)

as t̂ → +∞. Since η0 is not identically zero, η remains order (αR)1/3 into the outer
region t̂ = O((αR)1/3) and decays slowly over this timescale.

4.2.5. Inner solution for plane Poiseuille flow

For plane Poiseuille flow we cannot solve (4.38) analytically. However, the only
possible behaviour as t̂→∞ is

v̂ ∼ v̂0(y)

(U ′)2t̂2
e−iUt̂, (4.50)

for some v̂0(y), so that v̂ decays at infinity exactly as in plane Couette flow. By writing
v̂ as fe−iUt̂ in (4.38) and integrating over time we find that

η̂0 =
βU ′

U ′′
(v̂0 − a0). (4.51)

Now, for plane Couette flow v̂0 = a0, but also U ′′ = 0, so that η̂0 is non-zero. For
plane Poiseuille flow we have no reason to suppose that v̂0 = a0 (although we have
been unable to prove v̂0 6= a0), and therefore we conjecture that in this case also
η̂0 6= 0.

4.2.6. Times of order α−1(αR)1/3 after the maximum

Let us now consider the ‘outer’ region again for times beyond the blow-up point.
We rescale time again with (αR)1/3.

For plane Couette flow v is now order α(αR)−1/3, while η is still order (αR)1/3, and
we conjecture that this is the case for plane Poiseuille flow also. Then v is too small
to appear in the η-equation at leading order, so that the two equations decouple.
Equation (4.20) becomes

(αR)−1/3η̂t̃ = −iUη̂ + (αR)−1(η̂yy − k2η̂). (4.52)

We use the wkb ansatz η̂ = B exp((αR)1/3φ) as before. Matching from the ‘inner’
blow-up region gives the initial condition at t̃ = t̃0 as φ = 0, B = η0. As before, at
leading order φt̃ = −iU giving

φ = −iU (̃t− t̃0). (4.53)
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Figure 7. Numerical evolution of the maximum value of the numerically determined initial
condition leading to maximal growth for plane Couette flow with α = β = 1, R = 100 000.

At next order

Bt̃ = (φy)
2B, (4.54)

giving

B = η0 exp(−(U ′)2(̃t− t̃0)3/3). (4.55)

Hence

η ∼ η0(αR)1/3 exp(−α2(U ′)2(̃t− t̃0)3/3) exp(−iαU(αR)1/3(̃t− t̃0)). (4.56)

This describes the slow decay of η over this timescale of order (αR)1/3. Note that
during the decay η begins to oscillate rapidly again, so that its derivative is O((αR)2/3).

In figure 7 we show a numerical simulation of the evolution of the maximum of
the velocity and vorticity for the numerically determined initial condition leading to
maximum transient growth in plane Couette flow with α = β = 1 and R = 100 000.
We see that this reproduces the qualitative features of the asymptotic solution, namely
that v stays small for a long time, suddenly becomes large, and then just as suddenly
returns to be small again, whereas η stays small for a long time, suddenly becomes
large, and then slowly decays back to zero. Notice that the time that η reaches its
maximum is delayed slightly behind the time that v reaches its maximum. This is
because η is effectively the time integral of v (see (4.40)). This delay is O(α−1) as
αR →∞.

In figure 8 we show v at the time it has reached its maximum value. The real part
of v is shown; the imaginary part is zero. Notice that v is not oscillatory, in agreement
with the asymptotics.

4.3. Asymptotically large β

For completeness we should determine the extent of the transient growth in the case
when β is asymptotically large in R. Since this case turns out to be not relevant for
the optimal routes to transition we omit the details and simply give an indication of
the results.

The case of large β seems promising at first, since (4.29) indicates that as β increases
the scaling η increases relative to v, which is one cause of the transient growth. The
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Figure 8. The solution v at its maximum value using the numerically determined initial condition
leading to maximal growth for plane Couette flow with α = β = 1, R = 10 000. The real part of v
is shown; the imaginary part is zero.

canonical case to consider is β = R1/3β̄, with β̄ of order one. Besides changing the
relative scalings of v and η this has the effect of changing the denominator in (4.28)
from τ2 to τ2 + β̄2 (as well as modifying the exponential decay). However, this means
that the growth in v is smaller, since the double pole has split into two simple poles.
The result is a transient growth of order R1/3 in η, which is comparable to that when
β is of order one. However, to achieve this growth requires φ′0(y) to have real part
equal to ±β̄ (so that τ2 + β̄2 reaches zero for real t̃). Hence the optimally growing
initial condition is localized near the wall. We will see that this localization leads to a
smaller coupling with the streamwise modes, so we do not need to consider the case
of large β further.

4.4. Summary

We have now determined the answers to questions (i) and (ii) of § 3, namely we have
determined the extent of the transient growth in both streamwise and oblique modes.
In the next section we will examine the eigenvalues of the linearized equations, but
we first summarize our results so far.

Streamwise modes: α of order 1/R

The streamwise modes exhibit a maximum transient growth of order R over a
timescale of order R. They vary on an order-one lengthscale in y.

Oblique modes: αR � 1

The oblique mode with the largest transient growth has an initial condition of the
form

v0 ∼ α(αR)−1/3ṽ(y) exp(iU(αR)1/3t̃0), (4.57)

η0 ∼ η̃(y) exp(iU(αR)1/3t̃0). (4.58)

On a timescale of α−1(αR)1/3 this mode varies on a lengthscale of (αR)−1/3 in y. The
norm of the solution stays order one for times of order α−1(αR)1/3, then suddenly
(over an O(α−1) time) v and η grow to be of order α(αR)1/3 and (αR)1/3 respectively,
ceasing to oscillate rapidly in y at the same time. Just as suddenly, v returns to being
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of order α(αR)−1/3, but η stays of order (αR)1/3, decaying slowly over a timescale
α−1(αR)1/3, and oscillating rapidly in y on a lengthscale (αR)−1/3 again.

In fact the transient growth we have found for αR � 1 matches smoothly into that
for αR ∼ 1 for small α. The timescale for the growth is α−1(αR)1/3, and the maximum
growth of the norm is α−1(αR)1/3. The maximum growth occurs for α = O(1/R), as
we mentioned earlier. However, we will see that we must choose α = O(1) in order to
maximize the generation of a streamwise mode through the nonlinear terms while an
oblique mode is growing and decaying.

5. Eigenvalues of the linearized equations
Here we determine the position of the eigenvalues of the linearized equations

asymptotically as R → ∞. This will enable us to determine how large a streamwise
streak has to be in order to significantly perturb the eigenvalues, and in particular to
make an eigenvalue become unstable.

Since all the eigenvalues of the base flow we consider are stable, there has been
little interest in their asymptotic approximation (in contrast to the analysis of the
neutral curve for plane Poiseuille flow, on which there is a vast literature). The
asymptotic analysis that has been performed usually solves the equation in terms
of special functions (generalized Airy functions for plane Couette flow), formulates
the characteristic equation, and then approximates for large values of the Reynolds
number (Drazin & Reid 1981). This approach makes it quite difficult to see where
the scalings of the different classes of eigenvalues come from, and hard to see how
these eigenvalues would be perturbed by perturbing the equations.

The approach we take here is rather to approximate the equation for large values
of the Reynolds number, find approximate solutions, and then apply the boundary
conditions to determine the eigenvalues. This makes it very easy to see how the
eigenvalues will be affected by perturbations, but it does mean that we have to take
careful account of Stokes phenomenon. Some of the results of this section we believe
to be new (or at least presented in a new way), while others are very well known;
however, in both cases the crucial question we will address is how large a streamwise
streak has to be in order to significantly affect the calculation.

In a common notation, we define the eigenvalues through the relationship

vαβ(y, t) = e−iαλtv̄αβ(y),

so that a positive imaginary part of an eigenvalue λ corresponds to instability. We
drop the superscript αβ and the overbar without possibility of confusion to give

iλvyy − iλk2v − iU(vyy − k2v) + iU ′′v +
1

αR
(vyyyy − 2k2vyy + k4v) = 0, (5.1)

−iλη + iUη + i
β

α
U ′v − 1

αR
(ηyy − k2η) = 0. (5.2)

The eigenvalues of (5.1) are known as the Orr–Sommerfeld modes, while the
additional eigenvalues of (5.2) which have v = 0 are known as the Squire modes.
Early numerical computations of these eigenvalues were performed by Davey &
Drazin (1969). Note though that because of the extreme ill-conditioning of the
problem (which is due to the extreme non-normality of the linearized operator) many
of the early computations are not resolved.

A typical spectrum for plane Couette flow is shown in figure 9. Asymptotically the
eigenvalues fall into two classes: those with imaginary component of order one, and
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Figure 9. Eigenvalues of plane Couette flow with α = β = 1 and R = 2000. The orders of magnitude
of the imaginary parts as R →∞ are indicated. The eigenvalues were calculated in MATLAB using
the Chebyshev hybrid spectral discretization described in Reddy & Henningson (1993) and Reddy
et al. (1993).
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Figure 10. Eigenvalues of plane Poiseuille flow with α = β = 1 and R = 5000. The orders of
magnitude of the imaginary parts as R →∞ are indicated.

those with imaginary component of order (αR)−1/3 (which are localized in a region
of order (αR)−1/3 near the boundary and are known as wall modes), as indicated in
figure 9.

A typical spectrum for plane Poiseuille flow is shown in figure 10. Asymptotically
there are now three families of modes, having eigenvalues with imaginary component
O(1), O((αR)−1/3) and O((αR)−1/2) respectively. The modes with eigenvalues with
imaginary part O((αR)−1/3) are wall modes concentrated in a region of order (αR)−1/3

from the boundary, as in plane Couette flow. The new modes with eigenvalues having
imaginary component O((αR)−1/2) are ‘centre modes’; these are localized in a region
of order (αR)−1/4 around the centre of the channel.

For plane Poiseuille flow the even and odd modes decouple and may be considered
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independently if necessary, with the boundary conditions at either y = 1 or y = −1
being replaced with v = v′′ = η′ = 0 or v′ = v′′′ = η = 0 at y = 0 for even and odd
modes respectively.

For R > Rc ≈ 5772.2 one of the even wall modes in plane Poiseuille flow has a
positive imaginary part (the Tollmien–Schlichting wave, αc ≈ 1.021, βc = 0) corre-
sponding to linear instability. However, we will find that the centre modes are the
modes which exhibit the secondary instability involved in the routes to transition (i)
and (ii) discussed in the Introduction.

Let us first show how the position of the eigenvalues can be determined asymp-
totically from (5.1)–(5.2), in the limit αR → ∞; we will then consider how large
a streamwise streak has to be for the nonlinear terms on the right-hand side of
(3.23)–(3.24) to affect this calculation.

We start with the eigenvalues which have order-one imaginary component. These
are the most difficult to approximate, but they have received the least attention in
the literature since they are all strongly stable. The following analysis is essentially an
interpretation and extension of that by Morawetz (1952).

Of the eigenvalues which have order-one imaginary component, the Squire modes
are the easiest to deal with, so we will examine them first.

5.1. Squire eigenvalues with order-one imaginary component

Although for plane Couette flow we can solve the equation exactly in terms of Airy
functions and then approximate the characteristic equations, we prefer to approximate
the solutions of the equation directly, since this makes the effect of a perturbation
more transparent. With v = 0 the asymptotic solutions of (5.2) as αR → ∞ are of
wkb form. Setting

η = B exp((αR)1/2φ), (5.3)

we find that at leading order

−iλB + iUB − φ2
yB = 0, (5.4)

so that

φ = ±eiπ/4

∫
(U − λ)1/2 dy. (5.5)

At next order we find

2φyBy + φyyB = 0,

so that

B =
1

φ
1/2
y

. (5.6)

We will show that the leading-order position of the eigenvalues is determined purely
by the phase φ of these wkb solutions. In the following discussion the boundary
y = −1 should be replaced by y = 0 if we are dealing with plane Poiseuille rather
than plane Couette flow.

If the solution of (5.5) is such that the real part of φ has a turning point in the
interval (−1, 1) (as we will see that it is) then the eigenmode will be approximately
equal to the wkb solution for which the real part of φ has a maximum (call this phase
φ and the wkb approximation η1), which is exponentially small at the boundaries by
comparison to its value in the interior. Let us start with this solution and consider how
to add multiples of the other solution (with phase −φ; call this wkb approximation
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Figure 11. The Stokes line structure of η for an eigenvalue on the upper left-hand branch of the
‘Y’ in figure 14. The spiral indicates which of the two wkb solutions are present in each sector (and
represents the Riemann surface associated with the square-root branch point in the phase); d and s
indicate the dominant and subdominant wkb approximations respectively. The subdominant wkb
approximation is ‘switched off’ across the Stokes lines (solid), while the dominance of the two wkb
approximations switches across the anti-Stokes lines (dashed).

η2) in order to satisfy the boundary conditions (if there is no turning point in the real
part of φ in the interval (−1, 1) then we may start with either wkb solution).

Suppose first that Re(φ(−1)) > Re(φ(1)), so that η1(−1) exponentially dominates
η1(1). Then we can ignore the boundary condition at y = 1, but we must add an
O(exp(2(αR)1/2φ(−1))) multiple of η2 in order to satisfy the boundary condition at
y = −1. However, this additional multiple of η2 will exponentially dominate η1 at
y = 1, since its phase there is (αR)1/2(2φ(−1)−φ(1)) which has real part greater than
that of φ(1). The only way out of this conundrum is that η2 is switched off via Stokes
phenomenon as we cross a Stokes line somewhere between y = −1 and y = +1.

Now, locally near the turning points in the complex plane where φy = 0, φ has
a three-halves power singularity and the Stokes line structure is that of the Airy
equation. We require the solution which has only a single subdominant wkb solution
η1 in the phase sector containing y = 1, which is shown schematically in figure 11.
As we cross the Stokes line Im(φ) = 0 the other wkb approximation η2 is turned on,
and is present to help us satisfy the boundary condition at y = −1. However, to do
so it must have grown to be exactly the same size as η1 there, i.e. y = −1 must lie on
the anti-Stokes line (in agreement with the results of Morawetz 1952).

If Re(φ(−1)) > Re(φ(1)) this gives eigenvalues lying on the upper left-hand branch
of the ‘Y’ in figure 14. If Re(φ(1)) > Re(φ(−1)) then the structure of the Stokes lines
is as shown schematically in figure 12, which gives eigenvalues lying on the upper
right-hand branch of the Y in figure 14.

The final case to consider is the possibility that Re(φ(−1)) = Re(φ(1)). In this case
an exponentially large multiple of the solution shown in figure 13(b) can be added to
the solution shown in figure 13(a) to satisfy the boundary conditions at both y = ±1.
This is possible so long as the right-hand anti-Stokes line in figure 13(a) does not
cross −1 < y < 1, and gives the stem of the ‘Y’ in figure 14.
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Figure 12. As figure 11 but for an eigenvalue on the upper right-hand branch of the ‘Y’ in
figure 14.

Thus we can determine the asymptotic position of the eigenvalues in plane Couette
and plane Poiseuille flow as follows.

5.1.1. Plane Couette flow

For plane Couette flow

φ = −eiπ/4 2(y − λ)3/2

3
.

For Re(λ) < 0, the condition that y = −1 lies on the anti-Stokes line is

Re

(
eiπ/4 2(−1− λ)3/2

3

)
= 0,

i.e. arg(λ+1) = −π/6. For Re(λ) > 0, the condition that y = +1 lies on the anti-Stokes
line is

Re

(
eiπ/4 2(1− λ)3/2

3

)
= 0,

i.e. arg(λ−1) = −5π/6. Finally, the condition that Re(φ(1)) = Re(φ(−1)) is Re(λ) = 0.
In figure 14 we show the asymptotic lines that the Squire eigenvalues must lie on

as R → ∞, along with the Squire eigenvalues for R = 2000, α = β = 1. If we were
interested in the exact position of the eigenvalues it is a simple matter to determine
these using the wkb solutions. However for our present purposes the lines are enough.

5.1.2. Plane Poiseuille flow

For plane Poiseuille flow

φ =
e−iπ/4

2

(
y(λ− 1 + y2)1/2 + (λ− 1) log

(
y + (λ− 1 + y2)1/2

(1− λ)1/2

))
. (5.7)
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Figure 13. Stokes line structure of η for eigenvalues lying on the stem of the ‘Y’ in figure 14. An
exponentially large multiple of (b) is added to (a) in order to satisfy the boundary conditions at
both y = ±1. This is possible so long as the anti-Stokes lines (dashed) do not cross −1 < y < 1, i.e.
so long as Im(λ) is sufficiently large and negative.
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Figure 15. Asymptotic position of the Squire eigenvalues for plane Poiseuille flow. The points are
the numerical solution for the eigenvalues for R = 5000 and α = β = 1.

The condition that the anti-Stokes line goes through y = 0 is that Re(φ(0)) = 0, i.e.

Re

(
e−iπ/4(λ− 1)

iπ

2

)
= 0,

i.e. arg(λ− 1) = −3π/4. The condition that the anti-Stokes line goes through y = 1 is
that Re(φ(1)) = 0, i.e.

Re

(
e−iπ/4

(
λ1/2 + (λ− 1) log

(
1 + λ1/2

(1− λ)1/2

)))
= 0.

Finally, the condition that Re(φ(0)) = Re(φ(1)) gives

Re

(
e−iπ/4

(
λ1/2 + (λ− 1) log

(
1 + λ1/2

(1− λ)1/2

)))
= Re

(
e−iπ/4(λ− 1)

iπ

2

)
.

To ensure the anti-Stokes lines do not cross 0 < y < 1 we are restricted to the
portion of the curve lying below its intersection with the others. Note that, unlike
plane Couette flow, the stem of the Y is not vertical.

In figure 15 we show the asymptotic lines that the Squire eigenvalues must lie on
as R → ∞, along with the Squire eigenvalues for R = 5000, α = β = 1. Note that
the odd and even modes are interspersed on the right-hand and lower branches, but
are almost identical on the left-hand branch. Indeed they cannot be distinguished
graphically; each point in figure 15 represents both an even and an odd mode. This
is because the odd and even modes satisfy different boundary conditions at y = 0,
but the same boundary conditions at y = 1.

5.1.3. Perturbing the eigenvalues

We can now determine how large a streamwise streak, η0β1 say, has to be in order
to perturb the Squire eigenvalues with imaginary component of order one. Equation
(3.24) becomes

L
αβ
2 (ηαβ, vαβ) =

∑
β1+β2=β

N
0β1αβ2

2 (v0β1 , η0β1 , vαβ2 , ηαβ2 ), (5.8)

where the right-hand side is linear in vαβ2 , ηαβ2 . Since the unperturbed eigenvalues all
lie on the anti-Stokes line of the two wkb solutions, they will only be perturbed at
leading order if the perturbation added on the right-hand side of (5.8) changes the
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phase φ of the wkb solutions, that is, the terms on the right-hand side of (5.8) have
to be big enough to appear in equation (5.4). Now the left-hand side of equation (5.8)
is O(αη), while the right-hand side is O(η0β1αη). Hence the phase of the wkb solutions
will be modified only if η0β1 = O(1). Note that when this happens the equations
(5.8) are all coupled in the crosswise direction z, even though they still decouple
in the streamwise direction x. Thus the instability generated is a three-dimensional
instability of a now three-dimensional base flow (in contrast to the three-dimensional
instability of a two-dimensional base flow considered by Orszag & Patera 1983).

Let us now determine the position of the Orr–Sommerfeld eigenvalues with order-
one imaginary component.

5.2. Orr–Sommerfeld eigenvalues with order-one imaginary component

The asymptotic solutions of (5.1) comprise two inviscid solutions and two wkb
solutions. To leading order the inviscid solutions satisfy

iλ(vyy − k2v)− iU(vyy − k2v) + iU ′′v = 0, (5.9)

−iλη + iUη + i
β

α
U ′v = 0, (5.10)

while, setting

v = A exp((αR)1/2φ), η = B exp((αR)1/2φ), (5.11)

we find that at leading order the wkb solutions satisfy

iλφ2
y − iUφ2

y + φ4
y = 0, (5.12)

−iλB + iUB + i
β

α
U ′A− φ2

yB = 0. (5.13)

Hence the two wkb solutions again have

φ = ±eiπ/4

∫
(U − λ)1/2 dy, (5.14)

and we see that (5.13) implies that A = 0, so that the relative scaling of v and η in
(5.11) is wrong, and in fact we should have

v = (αR)−1/2A exp((αR)1/2φ), η = B exp((αR)1/2φ). (5.15)

At next order we find

2Ayφy + 5Aφyy = 0,

2φyBy + φyyB = i
β

α
U ′A,

so that

A = (φy)
−5/2, (5.16)

B = φ−1/2
y

∫
βiU ′A
2αφ

1/2
y

dy. (5.17)

We label the two wkb approximations, v3 and v4, such that

v3 ∼ φ−5/2
y exp((αR)1/2φ), (5.18)

v4 ∼ φ−5/2
y exp(−(αR)1/2φ), (5.19)
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where the sign of φ is chosen as before such that Re(φ) > 0 where Im(φ) = 0 with
y real, so that v3 exponentially dominates v4 there. We will label the two inviscid
approximations, v1 and v2, shortly.

The position of the Orr–Sommerfeld eigenvalues is determined by Stokes phe-
nomenon, as with the Squire modes. However, in this case, since there are four
linearly independent solutions of the equation rather than two, there are many more
Stokes switchings which are possible, and we need to take account of each of them.
Each of the two inviscid solutions may turn on a multiple of the subdominant wkb
approximation across the Stokes line Im(φ) = 0, while the dominant wkb approxi-
mation may turn on multiples of the inviscid solutions, as well as a multiple of the
subdominant wkb solution.

Since plane Couette flow turns out to be much simpler than plane Poiseuille flow,
we treat the flows separately, starting with Couette.

5.2.1. Plane Couette flow

For plane Couette flow two independent inviscid solutions are eky , and e−ky . In fact
these are exact solutions to (5.1), so that there is no Stokes line switching associated
with them.

We now build up an eigenfunction as follows. Consider first an eigenvalue in the
left half-plane. Then v4(1) exponentially dominates v4(−1) and v3(1).

Therefore, in the vicinity of y = 1, we may take a suitable linear combination
of the two inviscid approximations and the wkb approximation v4 to satisfy the
two boundary conditions there. Since v′4 = O((αR)1/2v4), to leading order the inviscid
solutions will satisfy the Dirichlet boundary condition, and an exponentially small
amount of v4, of order (αR)−1/2 exp(−(αR)1/2Re(φ(1)), will be added to satisfy the
Neumann condition.

Now let us consider the boundary conditions at y = −1. We still have the freedom
to add a multiple of the solution shown schematically in figure 11, which approximates
to v3 near y = 1 and is therefore negligible there. We must adjust the coefficient of
this solution and the eigenvalue λ in order to satisfy the two boundary conditions at
y = −1.

However, as well as the dominant wkb approximation v3 switching on a multiple
of the subdominant wkb approximation v4 across the Stokes line arg(y− λ) = π/2, it
also switches on multiples of the two inviscid solutions.

If we define the two inviscid solutions by their asymptotic behaviour as y → λ, so
that

v1 ∼ 1, v2 ∼ y − λ
as y → λ then the Stokes multiplier of the first is O((αR)5/12), while that of the second
is O((αR)3/4). This can be deduced easily using the techniques in Chapman et al.
(1998). Thus, as we cross the Stokes line as we move from y = 1 to y = −1 we find

v3 → v3 + av4 + (αR)3/4bv2 + (αR)5/12cv1,

where the constants a, b and c are order one. It is possible to calculate the constants
a, b and c, but we leave them unspecified since their exact value is unimportant for
our present purposes. Then, if at y = +1 our solution is approximated by

Âv1 + B̂v2 + v3 + Ĉv4

(where v3 is negligible near y = 1 and Ĉv4 is negligible near y = −1) then at y = −1,
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Figure 16. Asymptotic position of the Orr–Sommerfeld eigenvalues for plane Couette flow. The
points are the numerical solution for the eigenvalues for R = 2000 and α = β = 1.

having crossed the Stokes line, our solution is approximately

Âv1 + B̂v2 + (v3 + av4 + (αR)3/4bv2 + (αR)5/12cv1) + Ĉv4.

The boundary conditions at y = −1 give

Âv1 + B̂v2 + v3 + av4 + (αR)3/4bv2 ∼ 0, (5.20)

and
Âv′1 + B̂v′2 + (αR)1/2φ′v3 − a(αR)1/2φ′v4 + (αR)3/4bv′2 ∼ 0. (5.21)

Since we already have one relation between Â and B̂ from the conditions at y = 1, the
only way we can satisfy the boundary conditions is if Â and B̂ are O((αR)3/4), and one
of v3 or v4 is O((αR)1/4). Thus in this case we are not exactly on the anti-Stokes line,
but very close to it. With v3 = O((αR)1/4) we find Re(φ) = (αR)−1/2(log αR)/4, while for
v4 = O((αR)1/4) we must have Re(φ) = −(αR)−1/2(log αR)/4. Thus the eigenvalues lie
on two lines, one either side of the anti-Stokes line, with a different wkb exponential
dominant on each.

An alternative scenario is that the two wkb solutions are again of the same size at
y = ±1, as with the Squire modes, so that there are also Orr–Sommerfeld modes on
the stem of the ‘Y’.

In figure 16 we show the curves Re(φ) = ±(αR)−1/2(log αR)/4, and Re(φ(−1)) =
Re(φ(1)), along with the numerically determined Orr–Sommerfeld eigenvalues for
R = 2000, α = β = 1.

5.2.2. Plane Poiseuille flow

With plane Poiseuille flow the inviscid solutions are not so simple, and we have
the added complication that these solutions themselves exhibit Stokes phenomenon,
switching on a multiple of the subdominant wkb solution.

Let us define the two inviscid solutions, v1 and v2 say, through their asymptotic
behaviour as y → i(λ− 1), so that

v1 ∼ 1− i

(λ− 1)1/2
(y − i(λ− 1)1/2) log(y − i(λ− 1)1/2), (5.22)

v2 ∼ y − i(λ− 1)1/2, (5.23)

as y → i(λ − 1)1/2. We label the two wkb solutions as before. Now as we cross the
Stokes line Im(φ) = 0, from left to right,

v3 → v3 + av4 + b(αR)3/4v2 + c(αR)5/12v1,

v1 → v1 + d(αR)−3/4v4,
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with a, b, c and d of order one, while there is no Stokes jump associated with v2.
Again, the techniques of Chapman et al. (1998) can be used to determine the size of
the Stokes multiplier in v1 easily.

Let us first examine the family of eigenvalues lying on the right-hand branch of the
‘Y’ in figure 10, which become centre modes for small Im(λ). We start with a solution
near y = −1 which is approximated by

v ∼ Âv1 + B̂v2 + v3 + Ĉv4,

where Ĉv4 is exponentially negligible at y = 0, while v3 is exponentially negligible
at y = −1. Then we choose Â, B̂ and Ĉ to satisfy the two boundary conditions at
y = −1. Since v′4 = O((αR)1/2v4), to leading-order Â and B̂ are chosen to satisfy the
Dirichlet boundary condition, with an exponentially small amount of v4, of order
(αR)−1/2 exp(−(αR)1/2Re(φ(−1)), added to satisfy the Neumann condition.

Then, at y = 0, having crossed the Stokes line, we have

v ∼ Âv1 + Âd(αR)−3/4v4 + B̂v2 + v3 + av4 + b(αR)3/4v2 + c(αR)5/12v1 + Ĉv4.

For the odd modes we need to satisfy v = v′′ = 0 at y = 0. Hence

Âv1 + (B̂ + b(αR)3/4)v2 + (φ′)−5/2e(αR)1/2φ + (a+ Âd(αR)−3/4)e−(αR)1/2φ ∼ 0, (5.24)

Âv′′1 + (B̂ + b(αR)3/4)v′′2 + (φ′)−1/2αR e(αR)1/2φ

+(a+ Âd(αR)−3/4)(φ′)−1/2αR e−(αR)1/2φ ∼ 0. (5.25)

Since we have already determined Â to be the same order as B̂, and since b is O(1),
(5.24) implies that Â and B̂ are O((αR)3/4). Then (5.25) is dominated by at least one
of the wkb solutions, so that if there is to be a balance they must be of the same size,
i.e. the eigenvalue must again lie on the anti-Stokes line.

For the even modes we have v′ = v′′′ = 0 at y = 0. Hence

Âv′1 + (B̂ + b(αR)3/4)v′2 + (αR)1/2(φ′)−3/2e(αR)1/2φ

−(a+ Âd(αR)−3/4)(αR)1/2(φ′)−3/2e−(αR)1/2φ ∼ 0, (5.26)

Âv′′′1 + (B̂ + b(αR)3/4)v′′′2 + (φ′)1/2(αR)3/2e(αR)1/2φ

−(a+ Âd(αR)−3/4)(φ′)1/2(αR)3/2e−(αR)1/2φ ∼ 0. (5.27)

Again, since we have already determined Â and B̂ to be the same order, and since b is
O(1), (5.26) implies that Â and B̂ are O((αR)3/4). Then, as before, (5.27) is dominated
by at least one of the wkb solutions, and implies that the eigenvalue must lie on the
anti-Stokes line.

Let us now examine the family of eigenvalues lying on the left-hand branch of the
‘Y’ in figure 10, which become wall modes for small Im(λ). We start with a solution
near y = 0 which is approximated by

v ∼ Âv1 + B̂v2 + v3 + Ĉv4,

where Ĉv4 is exponentially negligible at y = −1, while v3 is exponentially negligible at
y = 0. Then we choose Â, B̂ and Ĉ to satisfy the two boundary conditions at y = 0.
Since v′4 = O((αR)1/2v4), to leading order Â and B̂ are chosen to satisfy boundary
conditions containing derivatives of lowest order, with an exponentially small amount
of v4, added to satisfy the other condition.
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Figure 17. Asymptotic position of the odd Orr–Sommerfeld eigenvalues for plane Poiseuille flow.
The points are the numerical solution for the eigenvalues for R = 5000 and α = β = 1.
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Figure 18. As figure 17 but for the even Orr–Sommerfeld eigenvalues for plane Poiseuille flow.

Then, at y = −1, having crossed the Stokes line, we have

v ∼ Â(v1 − d(αR)−3/4v4) + B̂v2 + v3 − av4 − b(αR)3/4v2 − c(αR)5/12v1 + Ĉv4.

Hence the boundary conditions at y = −1 give

Âv1 + (B̂ − b(αR)3/4)v2 + (φ′)−5/2e(αR)1/2φ

−(a+ Âd(αR)−3/4)(φ′)−5/2e−(αR)1/2φ ∼ 0, (5.28)

Âv′1 + (B̂ − b(αR)3/4)v′2 + (φ′)−3/2(αR)1/2e(αR)1/2φ

+(a+ Âd(αR)−3/4)(φ′)−3/2(αR)1/2e−(αR)1/2φ ∼ 0. (5.29)

Since Â and B̂ are the same order, we must have Â and B̂ of order (αR)3/4. Then,
as for plane Couette flow, the only way to satisfy the boundary conditions is for

e±(αR)1/2φ = O((αR)1/4), i.e. one of v3 or v4 must be O((αR)1/4). Thus again we are close
to the anti-Stokes line, with Re(φ) = ±(αR)−1/2(log(αR))/4.

Finally, for the stem modes, v3 and v4 are the same size at y = 0 and y = −1, so
that asymptotically these eigenvalues lie on the same line as the the Squire modes.

In figures 17 and 18 we show the lines Re(φ) = ± (αR)−1/2(log αR)/4, and
Re(φ(−1)) = Re(φ(0)), along with the numerically determined Orr–Sommerfeld eigen-
values for R = 5000, α = β = 1.
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Note that the agreement between the asymptotic lines and the numerical value
of the eigenvalues is poor for the even Orr–Sommerfeld eigenvalues lying on the
left-hand branches of the ‘Y’. The reason for this is that when Â and B̂ are chosen to
satisfy the leading-order behaviour in (5.28), namely

Âv1 + (B̂ − b(αR)3/4)v2 ∼ 0,

then
Âv′1 + (B̂ − b(αR)3/4)v′2

is close to zero, so that the eigenvalues are pushed closer to the anti-Stokes line. We
show why this is so in Appendix B.

The eigenvalues on the right-hand branch of the ‘Y’ are almost equal for the odd
and even modes. This has been commented on before Drazin & Reid (1981), but
as yet remains unexplained. The present analysis can be developed to explain this
coincidence; we defer this discussion to Appendix C.

Having determined the asymptotic position of the Orr–Sommerfeld eigenvalues
with order-one imaginary component, we can now determine the size of streamwise
streak, η0β1 , necessary to significantly perturb these eigenvalues.

5.2.3. Perturbing the eigenvalues

After the growth of a streamwise streak, equation (3.23) becomes

L
αβ
1 (ηαβ, vαβ) =

∑
β1+β2=β

N
0β1αβ2

1 (v0β1 , η0β1 , vαβ2 , ηαβ2 ), (5.30)

where the right-hand side is linear in vαβ2 , ηαβ2 . Now, the key fact to emerge from the
preceding analysis is that, as with the Squire modes, to leading order the eigenvalues
all lie on the anti-Stokes lines associated with the wkb solutions, and therefore their
position depends only on the phase of these solutions, φ. Hence the eigenvalues will
be perturbed at leading order only if the terms on the right-hand side of (5.30) are
big enough to appear in equation (5.12).

Now, under the wkb approximation, the left-hand side of equation (5.30) is O(α2Rv),
while the right-hand side is O(η0β1α2Rv) (since η = O((αR)1/2v/α)). Hence the phase
of the wkb solutions will be modified when η0β1 = O(1).

As with the Squire modes, once the streak is big enough to perturb the eigenvalues
the equations (5.30) are all coupled in the crosswise direction z, even though they still
decouple in the streamwise direction x, so that the base flow is three-dimensional.

Thus far we have dealt with all the eigenvalues with order-one imaginary compo-
nent. The eigenvalues with small imaginary component must be treated separately,
and because of their slow decay rate have received more attention in the literature.
For those with the anti-Stokes line passing through y = ±1 all the action takes place
near the boundary, so that they are known as wall modes, while for those with the
anti-Stokes line passing through y = 0 (for plane Poiseuille flow) all the action takes
place near the centreline, and they are known as centre modes.

5.3. Wall modes in plane Couette flow

For the wall modes near y = −1 (for example) the correct scaling is y = −1 +
α−1/3R−1/3ȳ, λ = −1 + α−1/3R−1/3λ̄ (see, for example Corcos & Sellars 1959; Gill
1965), giving

iλ̄vȳȳ − iȳvȳȳ + vȳȳȳȳ = 0, (5.31)

iλ̄η − iȳη + ηȳȳ =
i(αR)1/3βv

α
. (5.32)
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Now, the outer inviscid solutions can be determined as before, and satisfy the Dirichlet
condition at y = 1 to leading order. Hence the normalised outer solution away from
the wall is

v = sinh(y + 1).

As y → −1 this gives

v ∼ − sinh 2 + R−1/3ȳ cosh 2 + · · · .
Hence the boundary conditions on (5.31)–(5.32) are

v = vȳ = η = 0 on ȳ = 0, (5.33)

v → − sinh 2, η → 0 as ȳ →∞. (5.34)

The sinh 2 here simply determines the relative scaling of the eigenfunction in the outer
inviscid and inner wall regions; all that is important is that this factor is non-zero.
Equation (5.31) can easily be solved in terms of generalized Airy functions, and (5.32)
in terms of Airy functions, to give expressions for the eigenvalues. However, for our
present purposes all that is important is the scaling.

5.3.1. Perturbation of the wall-mode eigenvalues in Couette flow

Let us now determine how large a streamwise streak has to be to perturb the
wall-mode eigenvalues. There are two ways that this can be performed: we can
either modify equations (5.31) and (5.32), or we can modify the boundary conditions
(5.33) and (5.34). To modify the boundary conditions, we need to modify the inviscid
solutions. For these the left-hand side of (3.23) is O(αv), while the right-hand side is
O(η0β1α2η). Since v = O(αη) for the inviscid solutions, these will be modified when
η0β1 is O(1).

Now in the inner region near the wall the left-hand side of (3.23) is O(α(αR)1/3v),
while the right-hand side is O(η0β1α2(αR)1/3η). Since v = O(α(αR)−1/3η) in the wall
region, this means the right-hand side will be in the leading-order balance when η0β1 is
O((αR)−1/3). However, we must remember that η0β1 varies on an order-one lengthscale
in y, and must vanish at the boundary, so that in the inner wall region it takes values
order (αR)−1/3 smaller than in the bulk of the flow. Thus to achieve a value of η0β1

of order (αR)−1/3 in the wall region requires a streamwise streak of order one in the
bulk.

For the Squire wall modes, the left-hand side of (3.24) is O(α(αR)−1/3η), while the
right-hand side is O(η0β1αη). Again, this means that η0β1 must be O((αR)−1/3) in the
wall region, and therefore O(1) in the bulk of the flow.

5.4. Wall modes in plane Poiseuille flow

For the wall modes near y = −1 (for example) the correct scaling is (see, for example
Corcos & Sellars 1959; Gill 1965), y = −1 + α−1/3R−1/3ȳ, λ = α−1/3R−1/3λ̄, giving

iλ̄vyy − 2iȳvyy + vyyyy = 0, (5.35)

iλ̄η − 2iȳη + ηyy =
i(αR)1/3βv

α
. (5.36)

Now in this case the outer inviscid solutions satisfy

(1− y2)(vyy − k2v) + 2v = 0, (5.37)

α(1− y2)η = 2βyv, (5.38)
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to leading order. Now, as y → −1,

v ∼ c1(1 + (y + 1) log(y + 1)) + c2

(
(1 + y) +

(1 + y)2

2
+ · · ·

)
,

for some c1 and c2. Hence, providing c1 6= 0, the boundary conditions on (5.35)–(5.36)
are

v = vȳ = η = 0 on ȳ = 0,

v → c1, η → 0 as ȳ →∞.
Hence, for c1 of order one, the eigenvalues are the same as for plane Couette flow
(once the wall shear has been normalised); in particular they are all stable, and a
bulk streamwise streak of order one is required to perturb them at leading order.

The difference between the stability characteristics of plane Couette flow and plane
Poiseuille flow arises because for small α and β it turns out that c1 ∼ 0 for the even
modes. There is a vast amount of literature on the neutral stability curve for plane
Poiseuille flow, and we do not delve into it here, since it is peripheral for our purposes
(but refer the reader to the extensive discussion in Drazin & Reid 1981). However,
we do indicate very briefly how the scalings arise from the present analysis.

5.4.1. Small α and β; lower branch of the marginal stability curve

When α→ 0 (but αR � 1), and with β = 0, the outer inviscid solutions satisfy

(1− y2)vyy + 2v = 0, (5.39)

at leading order in α, with even solution

v = 1− y2 (5.40)

and odd solution

v = y + (1− y2) tanh−1 y. (5.41)

Now, for the even solution, c1 = 0 and

v ∼ 2(1 + y)− (1 + y)2

as y → −1. The boundary conditions on (5.35)–(5.36) then depend on the relative
scaling of R and α. For the even modes the first-order correction term to (5.40)
satisfies

(1− y2)vyy + 2v + α2(1− y2)2 − 2λ = 0,

with even solution

v =
α2

30
(y2(3y2 − 11) + 4(1− y2) log(1− y2)) + λ.

Hence as y → −1,

v ∼ 2(1 + y) + λ− 4α2

15
+ · · · . (5.42)

The canonical scaling for α so that both these terms appear in the boundary conditions
on the inner eigenvalue problem is such that in the inner scaling 1 + y = O(α2), i.e.
α = O(R−1/7). Note that λ is then also of the same order as α2. The boundary
conditions on the inner problem (5.35)–(5.36) are then

v = vȳ = η = 0 on ȳ = 0,

v ∼ 2ȳ + λ̄− 4(α7R)1/3

15
, η → 0 as ȳ →∞.
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However, when we apply these boundary conditions we find that there is an unstable
eigenvalue for all α greater than a critical value. Thus we have determined the
lower branch of the marginal stability curve, and there is another scaling between
α = O(R−1/7) and α = O(1) which will give the upper branch.

5.4.2. Upper branch of the marginal stability curve

We can see from (5.42) that there is another scaling possible. Suppose that, to
leading order, λ = 4α2/15. Then the constant term in v as y → −1 is O(α4) and
a different scaling is necessary for this term to appear in the boundary conditions
of the inner problem. To have both the linear and constant terms appearing in the
boundary conditions we require that in the inner scaling 1 + y = O(α4). However,
since λ = O(α2) the inner scaling no longer has y and λ of the same order, and the
inner problem is slightly different. In the inner region we balance λvyy with (αR)−1vyyyy
so that the scaling is 1 +y ∼ (λαR)−1/2, giving α = O(R−1/11). Note that then the inner
region is 1 + y = O(R−4/11) = O((αR)−2/5), while λ = O(R−2/11) = O((αR)−1/5). This
means the maximum of the wkb solutions lies away from the boundary layer, and
the matching conditions on the inner region are more complicated.

5.5. Centre modes in plane Poiseuille flow

The final set of eigenmodes we need to consider are the centre modes of plane
Poiseuille flow, which are localized near y = 0. The correct scaling is y = R−1/4α−1/4ȳ,
λ = 1 + α−1/2R−1/2λ̄ (see, for example Corcos & Sellars 1959; Gill 1965), giving

iλ̄vȳȳ + iȳ2vȳȳ − 2iv + vȳȳȳȳ = 0, (5.43)

−iλ̄η − iȳ2η − ηȳȳ =
2iβ(αR)1/4ȳv

α
. (5.44)

The outer inviscid solutions satisfy

y2(vyy − k2v)− 2v = 0, (5.45)

with solution

v = C1

(
cosh(ky)

y
− k sinh(ky)

)
+ C2

(
sinh(ky)

y
− k cosh(ky)

)
. (5.46)

Since this must satisfy the Dirichlet condition at y = −1 to leading order we have

v =
k(1 + y)

y
cosh(ky)− 1 + k2y

y
sinh(ky). (5.47)

Now as y → 0,

v ∼ k cosh k − sinh k

y
.

Hence, so long as k 6= 0, the boundary conditions on (5.43)–(5.44) are

v = vȳȳ = ηȳ = 0 on ȳ = 0,

v → k cosh k − sinh k

ȳ
, η → 0 as ȳ → −∞,

for odd modes and

vȳ = vȳȳȳ = η = 0 on ȳ = 0,

v → k cosh k − sinh k

ȳ
, η → 0 as ȳ → −∞,

for even modes.
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This time, as k → 0, the leading-order inviscid solutions are

v =
C1

y
+ C2y

2,

so that satisfying the Dirichlet condition at y = −1 is

v =
1 + y3

y
. (5.48)

Then, as y → 0,

v ∼ 1

y
,

so that there is nothing special about k → 0 for the centre modes.

5.5.1. Perturbation of the centre-mode eigenvalues for plane Poiseuille flow

Let us now determine how large a streamwise streak has to be to perturb the
centre-mode eigenvalues at leading order.

As for the wall modes, to modify the centre modes we can either modify equation
(5.43), or we can modify the boundary conditions, which come from the inviscid
solution on the outer region. We have already seen that the inviscid solutions will be
modified when η0β1 is of order one.

In the inner region the left-hand side of (3.23) is of order αv, while the right-
hand side is of order η0β1α(αR)1/2v. Hence the equation for the centre modes will
be perturbed at leading order when the streamwise streak η0β1 is O((αR)−1/2) in the
centre region.

Now, because in plane Poiseuille flow the odd and even modes decouple, if the
streamwise streak is an odd mode (v0β1 odd, η0β1 even) then η0β1 takes values near
the origin of the same order as in the bulk, and η0β1 of order (αR)−1/2 in the bulk
will perturb the eigenvalues at leading order. However, if the streamwise streak is an
even mode (v0β1 even, η0β1 odd) then η0β1 is of order (αR)−1/4 smaller near the origin
than in the bulk, and it requires an η0β1 of order (αR)−1/4 in the bulk to perturb the
eigenvalues at leading order.

Thus to minimize the perturbation required we should consider modes with α as
large as possible. The approximation of the eigenvalues in § 5.5 is valid so long as
α� R1/3, at which point additional terms appear in the leading-order balance. Above
this value of α the left-hand side of the equation grows more rapidly than the right,
and the perturbation becomes weaker again. Thus the canonical scaling would seem
to be α = O(R1/3), for which modes an odd streamwise streak of O(R−2/3) or an even
streamwise streak of O(R−1/3) will perturb the eigenvalues at leading order. However,
we will see in the next section that even though these large-wavenumber eigenvalues
are perturbed at leading order they remain stable, and that the order-one wavenumber
modes are the ones which become unstable. With α of order one it requires an odd
streamwise streak of order R−1/2 to generate instability.

Note that, since η0β1 � 1, none of the wall modes, including the Tollmien–
Schlichting mode, are perturbed at leading order, so that the neutral stability curve
of this mode is unchanged.

5.6. Summary

In this section we have shown how to determine the position of the eigenvalues
of the linearized Navier–Stokes equations asymptotically as αR → ∞. We found
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that to leading order the eigenvalues with O(1) imaginary component all lie on the
anti-Stokes lines of the two wkb solutions. Thus to perturb these eigenvalues by an
order-one amount, which will be necessary if they are to be perturbed to have positive
imaginary component, it is necessary to change the phase of the wkb solutions, rather
than their amplitude, i.e. the perturbation must be sufficiently strong to have an
effect on equation (5.4) or (5.12). We found that such a perturbation requires a
streamwise streak η0β1 of order one, i.e. the base flow must be perturbed at leading
order.

For the eigenvalues which have small imaginary component, the wall modes and
(for plane Poiseuille flow) the centre modes, a different approach is necessary, and
the eigenvalues are determined by a local ‘inner region’ in the vicinity of the wall
or centre respectively. To perturb these eigenvalues into instability it is necessary
for the perturbation to be sufficient to change this local equation (or its boundary
conditions).

The wall modes have eigenvalues with imaginary component of order (αR)−1/3,
and also require a streamwise streak η0β1 of order one to perturb them at leading
order.

The centre modes have eigenvalues with imaginary component of order (αR)−1/2

(so long as α 6 O(R1/3)). An odd streamwise streak of order (αR)−1/2 will perturb
these eigenvalues, while if the streamwise streak is even it must be O((αR)−1/4).
The most sensitive modes therefore correspond to α = O(R1/3), for which an odd
streamwise streak of order R−2/3 or an even streamwise streak of order R−1/3 is
enough to perturb the eigenvalues at leading order. However, even though these
large-wavenumber eigenvalues are perturbed at leading order they remain stable, and
it is in fact the order-one wavenumber modes which are the ones which become
unstable. With α of order one it requires an odd streamwise streak of order R−1/2, or
an even streamwise streak of order R−1/4 to generate instability.

We have briefly included the rather special scalings which give the one unstable
mode of plane Poiseuille flow. These will not be important for our bypass route to
transition (in fact, we will find that the centre modes are the important ones in plane
Poiseuille flow), but are included to show how the present work fits in with traditional
hydrodynamic stability theory.

The robustness of the eigenvalues of (5.1) and (5.2) with respect to perturbations
is remarkable, given that, as discussed in the Introduction, the operators (3.17) and
(3.18) are both highly non-normal as R → ∞ (in fact the eigenvalue problems for
these operators are exponentially ill-conditioned). Many values of λ with real part
between −1 and 1 fail to give eigenfunctions only by an exponentially small amount
in R, since there is a corresponding solution which is exponentially small near each
boundary by comparison to its maximum (Reddy & Henningson 1993).

Finally we note that in the numerical simulations of Reddy et al. (1998) the sec-
ondary instability of a streamwise streak in Couette flow occurred through the per-
turbation of a mode with order-one imaginary component, whereas that in Poiseuille
flow occurred through the perturbation of a centre mode, in agreement with the
present asymptotic analysis.

6. Secondary instability of centre modes
Let us examine briefly the nature of the secondary instability of the centre modes.

Since the Fourier modes in z are now all coupled it is easier to return to the
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Navier–Stokes equations and linearise about the new base flow, which is

u = (1− y2, 0, 0) + δ(u0(y, z), 0, 0) + · · · , (6.1)

ω = (0, 0, 2y) + δ

(
0,
∂u0

∂z
(y, z),−∂u0

∂y
(y, z)

)
, (6.2)

where δu0(y, z) is the small transiently growing streamwise streak (with zero stream-
wise wavenumber). Let us first examine the eigenvalue problem for α large. Linearising
the Navier–Stokes equations (3.5)–(3.11) about this flow gives

ξt− (ηU)y+uzU
′ −ζzU− 1

R
(ξxx+ξyy+ξzz) = δ(−(−η0u−ηu0)y+(ζ0u+ζu0)z), (6.3)

ηt + ηxU + vzU
′ − 1

R
(ηxx + ηyy + ηzz) = δ((−η0u− ηu0)x − (η0w − ζ0v)z), (6.4)

ζt−uxU ′+ ζxU− (vU ′)y− 1

R
(ζxx + ζyy + ζzz) = δ(−(ζ0u+ ζu0)x + (η0w− ζ0v)y), (6.5)

ux + vy + wz = 0, (6.6)

ξ = wy − vz, (6.7)

η = −wx + uz, (6.8)

ζ = vx − uy, (6.9)

with (u, v, w) = 0 on y = ±1, where

ζ0 = −∂u0

∂y
, η0 =

∂u0

∂z
. (6.10)

Subtracting the x-derivative of (6.5) from the z-derivative of (6.3) we find that the
Orr–Sommerfeld equation is perturbed to

−∇2vt +
1

R
∇4v − 2vx − (1− y2)∇2vx = δ[ζ0uxx + u0ζxx − (η0wx)y + (ζ0vx)y

+(η0u)yz + (ηu0)yz + (ζ0u)zz + (ζu0)zz]. (6.11)

Writing u = û(y, z)e−iαλt+iαx etc., with ū0 even, using the centre-mode scalings

y = (αR)−1/4ȳ, λ = 1 + (αR)−1/2λ̄, v̂ = v̄, û = α−1(αR)1/4ū,

ŵ = α−2(αR)1/4w̄, η̂ = α−1(αR)1/4η̄, ξ̂ = α−2(αR)1/2ξ̄, ζ̂ = α−1(αR)1/2ζ̄,

we find that (6.4) and (6.11) become (with α large)

−iλ̄η̄− iȳ2η̄−2ȳv̄z− η̄ȳȳ + ε2α2η̄− ε2η̄zz = δε−2(−iu0(0, z)η̄+η0(0, z)v̄ȳ + · · ·), (6.12)

i(λ̄+ ȳ2)(v̄ȳȳ − ε2α2v̄ + ε2vzz) + v̄ȳȳȳȳ − 2ε2α2v̄ȳȳ + 2ε2vȳȳzz − 2ε4α2vzz

+ε4vzzzz + ε4α4v̄ − 2iv̄ = iδε−2u0(0, z)(v̄ȳȳ − ε2α2v̄ + ε2vzz) + · · · , (6.13)

where ε = (αR)−1/4. The terms involving ε∂/∂z have been retained since the linearly
independent solutions which go to make up the eigenfunctions are of wkb form in z.
Those involving εα have been retained since we wish to consider large α.

Clearly the eigenvalues are perturbed by the right-hand side once δ is order
ε2 = (αR)−1/2 as predicted in the previous section. To minimize this we wish to make
α as large as possible. From the left-hand side of (6.12) and (6.13) it is clear that the



76 S. J. Chapman

distinguished limit is α = O(ε−1) giving α = O(R1/3), above which δ increases with
increasing α. This is the distinguished limit considered by Davey & Nguyen (1971)
for the case of pipe Poiseuille flow. However, in contrast to the results of Davey &
Nguyen (1971), with α = O(R1/3) even though the eigenvalues of (6.12) and (6.13) are
perturbed at leading order, they all remain in the lower half-plane and are therefore
stable. To see this multiply (6.12) by η̄ and (6.13) by v̄yy − ε2α2v̄ + ε2v̄zz and integrate
over y and z to give the Squire eigenvalues as

λ =

∫ 0

−∞

∫ lz

0

[(δε−2u0(0, z)− y2)|η|2 − i(|ηy|2 + ε2α2|η|2 + ε2|ηz|2)] dz dy∫ 0

−∞

∫ lz

0

|η|2 dz dy

and the Orr–Sommerfeld eigenvalues as

λ =

∫ 0

−∞

∫ lz

0

[(δε−2u0(0, z)− y2)|vyy − α2ε2v + ε2vzz |2 − 2(|vy |2 + α2ε2|v|2 + ε2|vz |2)] dz dy∫ 0

−∞

∫ lz

0

|vyy − α2ε2v + ε2vzz |2 dz dy

−i


∫ 0

−∞

∫ lz

0

[|vyyy − α2ε2vy + ε2vyzz |2 + ε2|vyyz−α2ε2vz + ε2vzzz |2 + α2ε2|vyy − α2ε2v + ε2vzz |2] dz dy∫ 0

−∞

∫ lz

0

|vyy − α2ε2v + ε2vzz |2 dz dy

 .
We can see why the large-α modes should be stable by considering the problem with
α of order one, which gives

−iλ̄ξ̄+(η̄ȳ2)ȳ−2ūzȳ+ζ̄z ȳ
2−(ξ̄ȳȳ−ε2α2ξ̄+ε2ξ̄zz) = δ(αR)1/2(η0ūȳ+η̄ȳu0+(ζ̄u0)z) (6.14)

−iλ̄η̄− iη̄ȳ2−2v̄z ȳ− (η̄ȳȳ− ε2α2η̄+ ε2η̄zz) = δ(αR)1/2(−iη0ū− iη̄u0−α−2(η0w̄)z), (6.15)

−iλ̄ζ̄+ 2iūȳ− iζ̄ȳ2 + 2(v̄ȳ)ȳ− (ζ̄ȳȳ− ε2α2ζ̄+ ε2ζ̄zz) = δ(αR)1/2(−iζ̄u0 +η0α
−2w̄ȳ), (6.16)

iū+ v̄ȳ + α−2w̄z = 0, (6.17)

ξ̄ = w̄ȳ − α2ε2v̄z , (6.18)

η̄ = −iw̄ + ūz , (6.19)

ζ̄ = iα2ε2v̄ − ūȳ . (6.20)

The key term which is lost in the limit α→ ∞ is the last term on the right of (6.15).
The instability is essentially an inviscid instability due to an inflectional profile of u0

in z, as has been observed in the numerical simulations of Reddy et al. (1998). To see
this suppose that δ(αR)1/2 � 1. Then λ̄ = O(δ(αR)1/2) and the solution is independent
of y to leading order and satisfies

−iλ̄ξ̄ − ε2ξ̄zz + ε2α2ξ̄ ∼ δ(αR)1/2(ζ̄u0)z

−iλ̄η̄ − ε2η̄zz + ε2α2η̄ ∼ δ(αR)1/2(−iη0ū− iη̄u0 − α−2(η0w̄)z),

−iλ̄ζ̄ − ε2ζ̄zz + ε2α2ζ̄ ∼ δ(αR)1/2(−iζ̄u0),

iū+ α−2w̄z ∼ 0,

ξ̄ ∼ −α2ε2v̄z ,
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η̄ ∼ −iw̄ + ūz ,

ζ̄ ∼ iα2ε2v̄,
giving

−λ̄(α2w̄ − w̄zz)− iε2(w̄zzzz − α2w̄zz + α4w̄) ∼ δ(αR)1/2

(
−(α2w̄ − w̄zz)u0 − ∂2u0

∂z2
w̄

)
,

which is just the Orr–Sommerfeld problem for the stability of the crosswise velocity
profile u0(0, z), as we would expect. For certain choices of u0(0, z) (and we can
choose u0(0, z) arbitrarily by combining different Fourier modes in z in the analysis
of § 4) there exists an inviscid instability for wavenumbers α less than some critical
wavenumber αc (in particular u0(0, z) must have an inflection point) (see e.g. Drazin
& Reid 1981).

The critical wavenumber αc is related to the typical lengthscale for variation of
u0(0, z). To obtain instability with α of order R1/3 we would need u0(0, z) to vary on
the lengthscale R−1/3. This requires crosswise wavenumbers β of order R1/3, for which
the transient growth is weaker. Large β requires a wkb solution to (4.6)–(4.7), which
still results in growth of η to be O(Rv), but now from (3.19) u is only order R−1/3η.
This factor of R1/3 outweighs the factor R−1/6 we gain in δ from having α of order
R1/3, so that the optimal route to transition is to have α and β of order one.

Since in the limit δ(αR)1/2 → ∞ for some α of order one there is an unstable
eigenvalue, by continuity there will continue to be an unstable eigenvalue so long as
δ(αR)1/2 is greater than some threshold (independent of R). Thus the threshold value
of δ to generate instability is O(R−1/2).

Reddy et al. (1998) calculate the decay rate of the least stable centre mode numer-
ically and find it to be proportional to R−0.55 in the range of Reynolds numbers they
consider (as opposed to the asymptotic value R−1/2). Instead of the mathematical ar-
gument about eigenvalues above, they then use a physical argument by balancing this
dissipation with the growth rate of the inflectional instability (which is proportional
to δ), concluding that a streak of size O(R−0.55) will induce instability (which leads
them to a threshold amplitude for a streamwise vortex of O(R−1.55) as we will see in
the next section).

7. Threshold amplitudes for transition
We are now in a position to combine the results of §§ 4 and 5 to determine the

threshold amplitudes for transition for flows with periodic boundary conditions.
The two modes to transition described in the Introduction and demonstrated in

the toy model of §2 are

(i) streamwise vortices→ streamwise streaks

→ secondary instability of oblique modes,

(ii) oblique modes→ streamwise vortices→ streamwise streaks

→ secondary instability of oblique modes.

Let us consider plane Couette and plane Poiseuille flow separately.

7.1. Plane Couette Flow

7.1.1. Route (i): an initial perturbation in the form of streamwise vortices

Consider an initial condition in the form of a streamwise vortex, that is η = 0,
v = v

0β1

0 (y) exp(iβ1z) for some order-one β1. We have seen in § 4 that if v0β1

0 (y) varies
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on an order-one lengthscale in y then it will decay over a timescale R, while at the
same time generating a streamwise streak η0β1 of order Rv0β1

0 . During this evolution
the right-hand side of (3.25) and (3.26) remains negligible, so that v0β1 and η0β1 are
evolving linearly.

Then, in § 5, we saw that a streamwise streak of order one is necessary to perturb
the eigenvalues of the oblique modes (3.27)–(3.28) at leading order. Thus the threshold
amplitude for secondary instability in the oblique modes with an initial perturbation
in the form of a streamwise vortex is O(R−1).

Note that we have found that all the eigenvalues of the oblique modes are perturbed
relatively by the same order of magnitude when η0β1 is of order one, so that there is
no easy way to predict which eigenvalue is the first to cross the real axis. This will
depend on the nature of the initial condition and the exact size of the perturbation to
the eigenvalues (rather than just its order of magnitude). However, once the secondary
instability has taken place, the growth rate is order (αR)−1/3 for the wall modes, but
order one for the other modes. Hence we expect the secondary instability to occur
predominantly away from the walls of the channel. Since the instability has an order-
one growth rate, while the streamwise modes are decaying over a timescale R, in
the limit of large R the secondary instability will generate fully developed order-one
oblique modes well before the streamwise modes have time to decay to zero, in which
case we enter the fully nonlinear regime of the equations and we expect to have
transition from the laminar state.

7.1.2. Route (ii): an initial perturbation in the form of optimally growing oblique
modes

Now consider an initial condition in the form of optimally growing oblique modes,
that is η = 0, v = v

αβ
0 (y)eiαxeiβz for some order-one α and β which we will choose

shortly.
We have seen in § 4 which initial conditions vαβ0 will generate the maximum linear

growth in the solution. For such initial conditions vαβ and ηαβ oscillate on a lengthscale
(αR)−1/3 (so that the norm of the initial condition ‖u0‖ = O((αR)1/3‖vαβ0 ‖)). For a time

of order α−1(αR)1/3 they remain order vαβ0 and order α−1(αR)1/3v
αβ
0 respectively, when

they suddenly (over an order-one time) grow to be order (αR)2/3v
αβ
0 and α−1(αR)2/3v

αβ
0

respectively, and cease to oscillate. After this, vαβ immediately (i.e. over an O(α−1)
time) returns to be order vαβ0 , while ηαβ remains of order α−1(αR)2/3v

αβ
0 , decaying over

the slow timescale (αR)1/3 and oscillating again on the lengthscale (αR)−1/3.
The final piece of information we need to calculate the threshold amplitude for

transition by route (ii) is question (iii) of § 3, namely the the size of the streamwise
vortex produced by the nonlinear terms in (3.25) and (3.26) during the evolution of
vαβ and ηαβ .

However, we also need to show that the nonlinear terms in (3.27) and (3.28) are
of lower order than the linear terms during this first phase of the linear growth
of the initial oblique mode (so that the evolution is indeed linear), which we do in
Appendix E. Note that if this were not the case, then the alternative route to transition
involving the ‘boot-strapping’ of oblique modes through nonlinear coupling, would
have a lower threshold amplitude than route (ii).

Now for the oblique mode with the maximum transient growth, the phase of vαβ

and ηαβ is pure imaginary, while the nonlinear terms in (3.25) and (3.26) involve
products of the modes with streamwise wavenumber α and −α. Hence we see from
(4.32), (4.33) that if the initial conditions are such that the blow-up times of these two
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modes are the same then the phases cancel in the product so that the nonlinear terms
of (3.25) and (3.26) vary on an order-one lengthscale in y. On the other hand, if the
blow-up times are different, then the nonlinear terms of (3.25) and (3.26) oscillate in y
on the lengthscale (αR)−1/3. The relevant scenario is the first one, since forcing (3.25)
and (3.26) with a more and more rapidly varying inhomogeneous term leads to a
wkb-type of solution which is of lower and lower amplitude (since the derivatives on
the left-hand side of the equation become larger and larger) and which decays more
and more rapidly. Note that if the phases of vαβ and ηαβ were not pure imaginary
then the products in (3.25) and (3.26) would be forced to be rapidly varying, so that
the optimally growing oblique mode (which has a pure imaginary phase) also leads
to the strongest possible forcing of streamwise modes. Thus the initial condition we
should give is in fact v = v

αβ
0 (y)eiαxeiβz + v

−αβ
0 (y)e−iαxeiβz for some non-zero α and β.

We have seen that the evolution of vαβ and ηαβ proceeds through three phases; as
we might expect, the dominant phase for the generation of streamwise vortices is the
third phase, where ηαβ is large, slowly decaying, and rapidly oscillating in y. Since
ηαβ = O(α−1(αR)2/3v0), η

αβ
y = O(α−1(αR)v0), the terms ηαβη−αβy and η−αβηαβy on the right-

hand side of (3.23) are O(α−2(αR)5/3v2
0). However, since the phases of ηαβ and η−αβ are

equal and opposite, the combination ηαβη−αβy + η−αβηαβy is only O(α−2(αR)4/3v2
0). Since

it holds this value for a time of order α−1(αR)1/3, if α 6 O(1) the nonlinear terms in
(3.23) will produce a non-oscillatory v0β of order α−1(αR)5/3v2

0 (which is R‖u0‖2) during
this phase, while if α� 1 the nonlinear terms in (3.23) will produce a non-oscillatory
v0β of order α−5(αR)5/3v2

0 (or α−4R‖u0‖2) . Hence to maximize the streamwise vortex
produced we should choose α to be less than or equal to order one.

We are now in a position to determine the threshold amplitude for an initial
disturbance in the form of oblique modes. We have already seen that a streamwise
vortex v0β of order R−1 is enough to induce transition, and we have now seen
that an initial oblique-mode perturbation v0 of order R−4/3 is enough to produce
this. However, remember that this initial perturbation is oscillating rapidly on the
lengthscale R−1/3, so that both its L2 and L∞ norm are in fact of order R−1.

For completeness we should check that the oblique modes are not producing large
streamwise streaks at the same time as they are producing the streamwise vortices.
We find that the nonlinear terms in (3.26) are of order R4/3v2

0 , which is smaller than
the forcing term v on the left-hand side, so that they are indeed negligible.

In summary, the threshold amplitude for transition with an initial perturbation
both in the form of a streamwise vortex and in the form of an oblique mode is
O(R−1).

In figure 19 we show a schematic diagram of the route to transition showing the
norm of the solution at each stage.

7.2. Plane Poiseuille flow

Let us now determine the threshold amplitude for initial perturbations of plane
Poiseuille flow. As explained in the introduction, we are concerned with the small
domain of attraction of the stable modes of the system, and will ignore the unstable
modes of non-periodic flows.

7.2.1. Route (i): an initial perturbation in the form of streamwise vortices

Consider an initial condition in the form of a streamwise vortex, that is η = 0,
v = v

0β1

0 (y) exp(iβ1z) for some non-zero β1. As for plane Couette flow v
0β1

0 (y) will
decay over a timescale R, while at the same time generating a streamwise streak η0β1

of order Rv0β1

0 .
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Figure 19. A schematic diagram showing the route to transition for plane Couette flow with the
norm of the solution at each point.

In § 5 we saw that the most sensitive eigenvalues are the centre modes. We found
that a streamwise streak η0β1 of order one was necessary to perturb the other modes
at leading order, whereas an even η0β1 of order R−1/2, or an odd η0β1 of order R−1/4

is enough to perturb the centre modes at leading order. Hence for an odd initial
perturbation v

0β1

0 the threshold amplitude for streamwise vortices is R−3/2, while for

an even initial perturbation v0β1

0 the threshold amplitude is R−5/4.
Since it is the centre modes which produce the secondary instability in plane

Poiseuille flow the instability will be concentrated in the centre of the channel. Note
also that in contrast to the Tollmien–Schlichting wave, which has α asymptotically
small with R, the centre modes which become unstable are those with streamwise
wavenumber α of order one.

Since the imaginary component of the perturbed eigenvalues is order R−1/2, the
growth rate of the instability will be order R−1/2. For large values of R this is much
larger than the decay rate of the streamwise modes (which is order R−1), so that
once the secondary instability takes place the solution will proceed to enter the fully
nonlinear regime of the equations and we expect to have transition from the laminar
state. However, for Reynolds numbers in the range 1500 to 5000, the difference
between these two timescales is not so great as it is in the case of plane Couette
flow. Hence it may be possible to initiate a secondary instability which does not have
time to grow enough to produce transition before the streamwise streak has decayed
and stabilized the oblique modes. This may explain why the numerically determined
threshold scalings for secondary instability and for full transition are the same for
plane Couette flow, but differ for plane Poiseuille flow in the region 1500 < R < 5000
(Reddy et al. 1998).
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Figure 20. A schematic diagram showing the route to transition for plane Poiseuille flow with the
norm of the solution at each point.

7.2.2. Route (ii): an initial perturbation in the form of optimally growing oblique
modes

Now consider an initial condition in the form of optimally growing oblique modes,
that is η = 0, v = v

αβ
0 (y)eiαxeiβz + v

−αβ
0 (y)e−iαxeiβz for some non-zero α and β, as for

plane Couette flow.
The calculation of the size of oblique and streamwise modes generated by the

nonlinear terms proceeds exactly as in the case of plane Couette flow. Thus an initial
condition of order v0 produces a streamwise vortex of order R5/3v2

0 . Note also that the
streamwise vortex produced is odd, whether the initial oblique perturbation is odd or
even. Thus an oblique perturbation of order R−19/12 will lead to transition. However,
since v0 oscillates rapidly in y on the scale R−1/3, the norm of this perturbation (both
L2 and L∞), which is the threshold amplitude, is of order R−5/4.

In summary, the threshold amplitude for an initial perturbation in the form of
a streamwise vortex is O(R−5/4) for even perturbations in y and O(R−3/2) for odd
perturbations in y, while the threshold amplitude for an initial perturbation in the
form of oblique modes is O(R−5/4). In each case the final secondary instability occurs
in the centre modes.

In figure 20 we show a schematic diagram of the route to transition showing the
norm of the solution at each stage.

We have found that in the limit R → ∞ a perturbation of O(R−3/2) is enough
to produce a secondary instability in the centre modes, while leaving the neutral
curve of the Tollmien–Schlichting mode unchanged. Thus our scenario for subcritical
transition in plane Poiseuille flow is that for large but subcritical Reynolds numbers
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a small but finite perturbation will destabilize the centre modes while leaving the wall
modes stable.

7.3. Threshold amplitudes for transition in non-periodic flows

The L∞ norm of the threshold amplitude of u scales-the same way for periodic and
non-periodic flows; the separation between streamwise and oblique modes becomes
asymptotic rather than sharp, but the analysis proceeds in exactly the same way.
However, when the solution is not periodic we must be more careful in calculating
its energy norm.

It is tempting just to let the period tend to infinity in (3.30), to give the rms energy
norm

lim
lx,lz→∞

(
1

lxlz

∫ lx

0

∫ lz

0

∫ 1

−1

(u2 + v2 + w2) dy dz dx

)1/2

. (7.1)

However, any perturbation localized over a finite region now has zero norm, and
since such perturbations can clearly lead to transition the threshold amplitude is
meaningless. On infinite domains we must instead consider the norm corresponding
to the total energy of the perturbation(

1

2

∫ ∞
−∞

∫ ∞
−∞

∫ 1

−1

(u2 + v2 + w2) dy dz dx

)1/2

. (7.2)

Now, though, a streamwise perturbation with α = 0 does not decay at infinity in x,
and therefore has infinite norm. However, streamwise perturbations with α = O(R−1)
exhibit the same growth characteristics, and these extend a distance O(R) in the
streamwise direction, so that their norm is greater than the L∞ norm by a factor of
order R1/2. Likewise, for a pair of oblique modes to generate a streamwise vortex
they must extend a distance O(R) in the streamwise direction, so that here again the
energy norm is greater than the L∞ norm by a factor of order R1/2.

Because of these extra factors, the transition involving only oblique modes described
in Appendix E may come into play, and a more careful analysis of it is required. In
fact, when considering infinite domains it is probably better to work in the primary
space of x and z rather than the Fourier space of α and β.

8. Comparison with numerical experiments
Numerical experiments by Lundbladh et al. (1994) seem to suggest that the thresh-

old amplitude for plane Couette flow should scale like R−1 for streamwise vortices
and like R−5/4 for oblique modes, while for plane Poiseuille flow it should scale
like R−7/4 for both streamwise vortices and oblique modes. Kreiss et al. (1994) also
examine numerical evolution of a pair of streamwise vortices in Couette flow and
find a threshold amplitude which scales like R−1. Further experiments by Reddy et al.
(1998) suggest that the amplitude of an initial streamwise vortex necessary to induce a
secondary instability in the oblique modes scales like R−1 and R−1.6 for plane Couette
flow and plane Poiseuille flow respectively. Our asymptotic results of R−1 and R−3/2

respectively agree reasonably well with these, and we already have an explanation in
§ 7.2.1 for the fact that, for not too large Reynolds numbers, there might be a differ-
ence between the amplitude necessary for transition and that necessary for secondary
instability.

However, there is disagreement for the oblique-mode threshold in both plane
Couette and plane Poiseuille flow, which we now try to explain.
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Figure 21. Numerically determined maximum growth for the plane Couette flow oblique mode
α = 1, β = 1. The linearized Navier–Stokes equations were solved in MATLAB using codes
written by Satish Reddy based a Chebyshev hybrid spectral discretization, as described in Reddy
& Henningson (1993) and Reddy et al. (1993). The figure shows the maximum norm of exp(A(t)),
where the linearized system is written as yt = Ay.

8.1. Plane Couette flow

Figure 21 shows the numerically determined maximum growth of the norm of the
solution of the linearized Navier–Stokes equations as a function of the Reynolds
number for the oblique mode α = 1, β = 1 in plane Couette flow. Figure 22 shows an
approximation to the gradient of this curve, calculated using a simple central difference
between successive points. We see that the curve takes a long time to approach its
asymptote of 1/3. The transient growth appears to scale like a much higher power of
the Reynolds number than this for Reynolds numbers in the range 500 6 R 6 2000,
which is the range for the numerical experiments in Lundbladh et al. (1994).

Let us try and determine the effect of this on the threshold amplitude. Suppose that
the transient growth in the oblique modes is G and that it decays over a timescale T .
Then if the initial norm of the perturbation is N, the nonlinear terms in (3.23) will pro-
duce a v of size TG2N2. Hence, the condition for instability is TG2N2 ∼ R−1, so that

N ∼ R−1/2

GT 1/2
. (8.1)

Hence if the exponent of the growth in the oblique modes appears larger than it really
is, the exponent of the threshold amplitude will appear smaller than the true asymp-
totic value. In figure 23 we show the result of using the numerically determined value
of G to estimate the scaling of N. Thus we have a possible explanation for why the
threshold amplitude found in Lundbladh et al. (1994) for the range 500 6 R 6 2000
is much lower than −1.

8.2. Plane Poiseuille flow

Figure 24 shows the numerically determined maximum growth of the norm of the so-
lution of the linearized equations as a function of the Reynolds number for the oblique
mode α = 1, β = 1 in plane Poiseuille flow (the maximum growth occurs for an even
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Figure 22. Numerically determined maximum growth exponent for the plane Couette flow oblique
mode α = 1, β = 1.
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Figure 23. The power of the threshold amplitude for plane Couette flow based on the numerically
determined transient growth for the oblique mode α = 1, β = 1.

initial condition). Figure 25 shows the gradient of this curve, again computed from
figure 24 using simple central differences. As before, the curve takes a long time to ap-
proach its asymptote of 1/3. The transient growth appears to scale like a much higher
power of the Reynolds number than this for Reynolds numbers in the range 1500 6
R 6 5000, which is the range for the numerical experiments in Lundbladh et al. (1994).

As before, suppose that the transient growth in the oblique modes is G and that
it decays over a timescale T . Then if the initial norm of the perturbation is N, the
condition for instability is TG2N2 ∼ R−3/2, so that

N ∼ R−3/4

GT 1/2
. (8.2)
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Figure 24. Numerically determined maximum growth for the plane Poiseuille flow oblique mode
α = 1, β = 1. The linearized Navier–Stokes equations were solved in MATLAB using codes
written by Satish Reddy based a Chebyshev hybrid spectral discretization, as described in Reddy
& Henningson (1993) and Reddy et al. (1993). The figure shows the maximum norm of exp(A(t)),
where the linearized system is written as yt = Ay.
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Figure 25. Numerically determined maximum growth exponent for the plane Poiseuille flow
oblique mode α = 1, β = 1.

The result of using the numerically determined value of G to estimate N is shown in
figure 26.

Thus we see again a possible reason why the threshold amplitude found in Lund-
bladh et al. (1994) for the range 1500 6 R 6 5000 is much smaller that −5/4.

Finally we should indicate why the numerically determined exponent of the transient
growth may converge so slowly to its asymptotic value. Suppose the growth rate is
G = A(R1/3 + B). In figures 22 and 25 we plot the gradient of logG with respect to
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Figure 26. The power of the threshold amplitude for plane Poiseuille flow based on the
numerically determined transient growth for the oblique mode α = 1, β = 1.

Couette Poiseuille

Streamwise −1 −3/2
Oblique −1 −5/4

Table 2. Asymptotically determined threshold exponents for initial perturbations in the form of
optimally growing streamwise vortices and optimally growing oblique modes in plane Couette and
plane Poiseuille flow.

logR, which is

d logG

d logR
=

1

3
+

−BR−1/3

3(1 + BR−1/3)

∼ 1

3
− BR−1/3

3
.

Now, at a Reynolds number of 1000, R−1/3 is only 1/10, so that even B = 5 will
produce a 50% error in the numerically determined exponent.

9. Conclusions
We have examined the threshold amplitude for transition from the laminar state

as the Reynolds number R →∞ through an analysis of the Navier–Stokes equations.
We find that for plane Couette flow the threshold scales like R−1 for the two routes
to transition

(i) streamwise vortices→ streamwise streaks

→ secondary instability of oblique modes,

(ii) oblique modes→ streamwise vortices→ streamwise streaks

→ secondary instability of oblique modes,
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while for plane Poiseuille flow the threshold scales like R−5/4 and R−3/2 for even and
odd perturbations respectively via route (i), and like R−5/4 via route (ii) (see table 2).
We have also examined the boot-strapping route to transition

(iii) streamwise vortices→ streamwise streaks→ streamwise vortices

and have found that the threshold amplitude is of O(R−1) for both plane Couette and
plane Poiseuille flow.

The secondary instability in the oblique modes in plane Couette flow occurs in
all modes and will therefore be distributed throughout the channel, although the
growth rate of the wall modes is much smaller than that of the others. The growth
rate of the non-wall modes is of O(1), while the streamwise streak generating the
instability decays on a timescale of O(R), so that the secondary instability has plenty
of time to generate order-one oblique modes, entering the fully nonlinear regime in
the equations, before the streak decays.

For plane Poiseuille flow the secondary instability is in the centre modes, which
are localized near the centre of the channel. The instability is essentially an inviscid
instability due to an inflectional profile in the crosswise coordinate z; the centre modes
are the most sensitive since they are localized in a region of low shear. The growth rate
of the instability is of O(R−1/2); in this case, even though there is a large difference in
the timescales as R → ∞, for finite R they may not be so different and it is possible
that the secondary instability may not have time to generate order-one oblique modes
leading to full transition before the streamwise streak has decayed. This may explain
the difference in the threshold amplitudes for secondary instability and transition
observed numerically in Reddy et al. (1998). For the route to transition (i) we find
that the threshold amplitude scales differently for odd and even perturbations, which
agrees with the numerical findings of Lundbladh et al. (1994).

Our asymptotic results for threshold amplitudes for the route to transition (i) agree
with the numerical results of Lundbladh et al. (1994). However, the results for the
route to transition (ii) are not in such good agreement. This is because the transient
growth in the oblique modes converges only slowly to its asymptotic value, which
leads to an apparently lower threshold exponent at moderate Reynolds numbers.

For plane Couette flow and plane Poiseuille flow on a fixed periodic domain our
results determine the scaling of the basin of attraction of the laminar state as R →∞.
However, plane Poiseuille flow on an infinite domain is linearly unstable for large
Reynolds numbers, so that our analysis needs more careful interpretation. We have
determined the scaling of the domain of attraction of the stable modes of the system.
While such an analysis is irrelevant for very large R (since the unstable modes will
dominate), we expect that subcritical transition for R < 5772 is caused by the small
domain of attraction of the laminar state, and that the origin of this and route to
transition is qualitatively similar to that of the stable modes in the limit as R →∞.

We have examined explicitly the cases of plane Couette and plane Poiseuille flow,
but the analysis is trivially extended to the case of a combined plane Poiseuille and
plane Couette flow. The transient growth calculation is valid for arbitrary U(y).
The calculations of the perturbations of the eigenvalues follow as before. The only
difference is that the centre modes exist if and only if there is a point of zero shear
in the profile U(y). If this is the case then the flow will basically behave like plane
Poiseuille flow, while if not it will behave like plane Couette flow. Of course there is a
special case when the zero shear point lies on the wall, but this is also easily treated.

While the asymptotic results compare resonably favourably with direct numerical
simulations of the Navier–Stokes equations on periodic domains, it is very difficult to
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find suitable experimental data with which to compare. This is because the transient
growth of streamwise vortices to streamwise streaks takes a long time (it occurs
on the viscous timescale of order R): the streamwise vortex transfers momentum
from the basic flow via the lift-up mechanism until it decays through the action of
viscosity. Hence in an experimental situation the maximum transient growth will not
be achieved until the perturbation has travelled a distance O(R) (i.e. order Reynolds
number channel half-widths) downstream. Experimental configurations often have
very long pipes or channels, but this is to ensure that the boundary layers generated
at the inlet have diffused to establish Poiseuille flow (which also takes a distance O(R)).
A perturbation is induced and typically transition is looked for a few pipe diameters
or channel widths downstream. An optimal perturbation of the type described here
would be out of the end of the pipe or channel before it had had a chance to induce
transition.

There are two conclusions we can draw from this: (i) if the threshold amplitude is
to be measured experimentally it is necessary to have a pipe which is O(R) radii long
both upstream and downstream of the induced perturbation, and (ii) the threshold
amplitude described in this paper, although optimal for infinite channels, may be
increased for finite channels. With a finite channel it is necessary to place restrictions
on the time taken to achieve transition. The transient growth of streamwise modes
will be reduced in proportion to the time allowed, which will correspondingly raise
the threshold amplitude.

The author would like to thank Professor L. N. Trefethen for introducing him to
the subject of subcritical transition, for many useful discussions, and for many helpful
suggestions on the presentation of this work, including in particular the suggestion to
include tables 1 and 2 and figures 1–3 and 19–20. The numerical codes used to solve
the linearized Navier–Stokes equations were written in MATLAB by Professor S. C.
Reddy, based on Fortran codes written by Professor D. S. Henningson. The author
would like to thank Professor D. S. Henningson, Dr S. J. Cowley, Professor P. Duck
and Prof P. G. Drazin for guiding him towards relevant literature. The author also
gratefully acknowledges many useful discussions with Dr J. R. Ockendon. Finally, the
author would like to thank the referees for their many helpful comments.

Appendix A. Nonlinear terms in the Navier–Stokes equations
The nonlinear terms in (3.23) are given explicitly by
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2 . The nonlinear terms in (3.24) are given by
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Appendix B. Poor numerical agreement with the asymptotics for even
modes

The reason for the poor agreement between the asymptotic and numerical results
in figure 18 is that when Â and B̂ are chosen to satisfy the leading-order behaviour
in (5.28), namely

Âv1 + (B̂ − b(αR)3/4)v2 ∼ 0,

then

Âv′1 + (B̂ − b(αR)3/4)v′2
is close to zero, so that the eigenvalues are pushed closer to the anti-Stokes line. To
see why this is so we examine the inviscid solutions as k2(λ − 1) → 0. The inviscid
solutions satisfy

(λ− 1 + y2)(vyy − k2v)− 2v = 0.

Let y = i(λ− 1)1/2s. Then

(1− s2)(vss + k2(λ− 1)v) + 2v = 0.

We have the asymptotic behaviour

v1 ∼ 1 + (s− 1) log(s− 1),

v2 ∼ i(λ− 1)1/2(s− 1),

as s→ 1. If we expand in powers of k2(λ− 1) we find that

v1 = s+ (1− s2) tanh−1 s+ · · ·

=
1

i(λ− 1)1/2

(
y +

y2 + λ− 1

(λ− 1)1/2
tan−1

(
y

(λ− 1)1/2

))
+ · · · ,

v2 = − i(λ− 1)1/2

2
(1− s2) + · · · = y2 + λ− 1

2i(λ− 1)1/2
+ · · · .

The key point is that v2 is even. This means that for the even wall modes, to satisfy
the conditions at y = 0 we must choose Â = 0. Then to satisfy the conditions at
y = −1 we must have B̂ ≈ b(αR)3/4. But then

Âv′1 + (B̂ − b(αR)3/4)v′2 ≈ 0,

so that exp(Re(±φ)) = o(R1/4). Thus for the even modes the eigenvalues move closer
to the Squire modes. Note that this does not happen with the odd modes.

It is possible to perform a double expansion in k2(λ− 1) and R to obtain a closer
fit with the numerical results, but we do not pursue such a line further here, since we
are interested only in the asymptotic position of the eigenvalues as R →∞.

Appendix C. Closeness of the eigenvalues for even and odd modes
It is interesting that the even and odd eigenvalues on the right-hand branch of the

‘Y’ for plane Poiseuille flow are very nearly equal. Ng & Reid (1999) have recently
examined the outer limit of the inner problem (5.44) in the limit α→ 0 to throw light
on this curiosity. Here we show that the reason for this can again be explained by
considering the inviscid solutions as λ → 1, i.e. we consider the inner limit of the
outer problem (without the restriction of small α).
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C.1. Even modes

Since in this limit v1 is odd, v2 is even, (5.26)–(5.27) become

Âv′1 + (αR)1/2(φ′)−3/2e(αR)1/2φ − (a+ Âd(αR)−3/4)(αR)1/2(φ′)−3/2 e−(αR)1/2φ ∼ 0,

(C 1)

Âv′′′1 + (φ′)1/2(αR)3/2e(αR)1/2φ − (a+ Âd(αR)−3/4)(φ′)1/2(αR)3/2 e−(αR)1/2φ ∼ 0.

(C 2)

Thus Â ≈ 0 (and hence B̂ ≈ 0 by the boundary conditions at y = −1). Hence the
eigenvalues lie approximately at the zeros of

e(αR)1/2φ − a e−(αR)1/2φ.

These are interspersed with the Squire modes, which lie approximately at the zeros of

e(αR)1/2φ + a e−(αR)1/2φ.

C.2. Odd modes

With v1 odd and v2 even (5.24)–(5.25) become

(B̂ + b(αR)3/4)v2 + (φ′)−5/2e(αR)1/2φ + (a+ Âd(αR)−3/4) e−(αR)1/2φ ∼ 0, (C 3)

(B̂ + b(αR)3/4)v′′2 + (φ′)−1/2αR e(αR)1/2φ

+(a+ Âd(αR)−3/4)(φ′)−1/2αR e−(αR)1/2φ ∼ 0. (C 4)

Hence B̂ ≈ −b(αR)3/4. Now, by the boundary condition at y = −1,

Âv1(−1) + B̂v2(−1) ∼ 0,

so that

Â ∼ − B̂v2(−1)

v1(−1)
.

Hence the eigenvalues for the odd modes lie approximately at the zeros of

eR
1/2φ +

(
a+

bdv2(−1)

v1(−1)

)
e−R

1/2φ.

The reason that these are almost equal to the eigenvalues of the even modes is that,
remarkably,

bdv2(−1)

v1(−1)
∼ −2a.

At y = −1 we find
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as λ→ 1. Now, in Appendix D we show that

a = −i, (C 5)

b ∼ 21/2π1/2e3iπ/8

(λ− 1)1/4
, (C 6)

d ∼ 21/2π1/2eiπ/8

(λ− 1)1/4
. (C 7)

in the limit λ→ 1. Hence
bdv2(−1)

v1(−1)
∼ 2i = −2a.

Appendix D. Stokes multipliers
D.1. Stokes multipliers (i) inviscid to wkb

Consider first the Stokes multiplier c. We can determine it by a local examination in
the vicinity of i(λ− 1)1/2. Let

v = 1− i

(λ− 1)1/2
(y − i(λ− 1)1/2) log(y − i(λ− 1)1/2)− i(2αR)−1/3

(λ− 1)2/3
v̄,

y = i(λ− 1)1/2 + (2αR)−1/3(λ− 1)−1/6s.

Then

v̄ssss − sv̄ss = − 2

s3
,

with

v̄ ∼ − 1

3s2
as s→∞.

With a series expansion

v ∼
∞∑
n=1
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we find

cn =
cn−1(3n− 1)(3n)(3n+ 1)

3(n+ 1)
,

so that

cn = − (3n+ 1)!

3n+1(n+ 1)!
. (D 1)

Thus

v̄ ∼ −
∞∑
n=1

(3n+ 1)!

3n+1(n+ 1)!s2+3n
. (D 2)

Now,

(3n+ 1)!

3n+1(n+ 1)!
∼ 31/2
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(
3

2

)2n

Γ(2n+ 1/2)

as n→∞. Hence, as n→∞,

v̄n ∼ −Γ(2n+ 1/2)

π1/2s5/4

(
3

2s3/2

)2n+1/2

.
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The methods of Daalhuis et al. (1995) and Chapman, King & Adams (1998) which
use matched asymptotic expansions to ‘smooth’ the Stokes discontinuity can then be
employed to determine the Stokes multiplier. The Stokes line is at arg(s) = −2π/3,
across which the wkb solution turned on in v̄ is

−π
1/2

s5/4
exp(2s3/2/3),

which is

− i(2αR)−1/3

(c− 1)2/3

π1/2

s5/4
exp(2s3/2/3),

in v. Now, in the inner coordinates,

v4 ∼ (αR)5/12

25/6e5iπ/8(λ− 1)5/12s5/4
exp(2s3/2/3).

Hence the Stokes multiplier is

21/2π1/2eiπ/8

(λ− 1)1/4(αR)3/4
.

Thus

d =
21/2π1/2eiπ/8

(λ− 1)1/4
. (D 3)

D.2. Stokes multipliers (ii) wkb to inviscid

Now let us consider the Stokes multiplier b, that is we consider the solution v3 in the
vicinity of i(λ− 1)1/2. Since in the inner coordinates

v3 ∼ (αR)5/12

25/6e5iπ/8(λ− 1)5/12s5/4
exp(−2s3/2/3),

let

v =
(αR)5/12

25/6e5iπ/8(λ− 1)5/12
v̄,

y = i(λ− 1)1/2 + (2αR)−1/3(λ− 1)−1/6s.

Then

v̄ssss − sv̄ss = 0, (D 4)

with

v̄ ∼ exp(−2s3/2/3)

s5/4
as s→∞.

In this case, rather than using the series and smoothing the Stokes line, it is easier to
write the solution to (D 4) as

v̄ = 2π1/2

∫ ∞
s

∫ ∞
p

Ai(q) dq dp = 2π1/2

∫ ∞
s

∫ q

s

Ai(q) dp dq = 2π1/2

∫ ∞
s

(q − s)Ai(q) dq.

(D 5)

For −2π/3 < arg(s) < 2π/3 as s → ∞ The steepest descent path is as shown in
figure 27(a), and the only contribution is from the endpoint, which gives

v̄ ∼ 2π1/2

∫ ∞
0

exp(−2s3/2/3)

2π1/2s1/4
q̄ exp(−s1/2q̄) dq =

exp(−2s3/2/3)

s5/4
,
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Im(q)

Re(q)

s

(a)
Im(q)

Re(q)

s

(b)

Im(q)

Re(q)

s

(c)

Figure 27. Steepest descent paths for (D 5).

as required. Now, for arg(s) < −2π/3 the steepest descent path from the dominant
wkb approximation to the Airy function tends to s = +∞ e−4iπ/3 rather than s = +∞.
However, because of the Stokes phenomenon in the Airy function we must be careful
not to deform the contour to this path, on which the other wkb approximation is
present, which grows at infinity. We deform first to a contour from the endpoint
to −∞ plus an integration along the real axis, as shown in figure 27(b). Then we
split the integration along the contour from the endpoint to −∞ in to the two wkb
approximations, and deform one contour to go to s = +∞ e−4iπ/3 and one to go to
s = +∞ e−2iπ/3, as shown in figure 27(c). Since neither path goes through the turning
point the wkb approximations are valid. However, for the integration along the real
axis we cannot replace the Airy function by its wkb approximation.

Thus we find that across the Stokes line we have two endpoint contributions, corre-
sponding to the two wkb solutions, and the integral along the real axis, corresponding
to the inviscid solution. This latter contribution is

v̄ ∼ −2π1/2s

∫ ∞
−∞

Ai(q) dq = −2π1/2s.

Hence, in v, the amount of inviscid solution turned on is

−21/6π1/2 se−5iπ/8(αR)5/12

(λ− 1)5/12
.
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Now, in the inner coordinates

v2 ∼ (2αR)−1/3(λ− 1)−1/6s.

Hence the Stokes multiplier is

−21/2π1/2e−5iπ/8(αR)3/4

(λ− 1)1/4
,

so that

b = −21/2π1/2e−5iπ/8

(λ− 1)1/4
. (D 6)

Appendix E. Nonlinear oblique mode interactions
Let us first note that the phases of the nonlinear terms in (3.23), (3.24) automatically

satisfy the eikonal equation, so that the nonlinear terms are effectively forcing the
amplitude equations (4.22), (4.23). We begin by determining the size of the optimally
growing oblique-mode perturbation required to bring the nonlinear terms in (3.23),
(3.24) into play if the initial conditions are such that the blow-up times for all
wavenumbers are the same. Then the nonlinear terms also feed back onto modes with
this blow-up time. During the first phase of the evolution the left-hand side of (3.23)
is order R1/3v0 while the right-hand side is order Rv2

0 , giving v0 = O(R−2/3). Likewise
the left-hand side of (3.24) is order v0, while the right-hand side is order R2/3v2

0 .
During the second phase the left-hand sides of (3.23) and (3.24) are order R2/3v0,

while the right-hand sides are order R4/3v2
0 .

During the third phase the left-hand side of (3.24) is order R1/3v0 while the right-
hand side is order R4/3v2

0 . Similarly the left-hand side of (3.23) is order R1/3v0 while
the right-hand side is order R5/3v2

0 . As expected, the third phase is the dominant
one. However, even though (3.23) would seem to imply a nonlinear effect when
v0 = O(R−4/3), in fact the forcing term in (3.23) is a function of η only, and there is
no forcing term in the η-equation with this scaling, so that v simply grows transiently
as η decays. To obtain a true feedback requires the scaling v0 = O(R−1) so that the
nonlinear terms in (3.24) come into play.

There is no boot-strapping in the method of transition described above – the initial
transient growth simply gives the solution a kick start. The effect of the transient
growth will be greater if the nonlinear terms can feed the large amplitude of two
modes past their blow-up times back into another mode before its blow-up time.
From (4.32), (4.33) we see that the blow-up time of the mode fed by the product of
modes with streamwise wavenumbers n1 and n2 and blow-up times t̃1 and t̃2 is the
weighted average

n1t̃1 + n2t̃2

n1 + n2

.

If n1 and n2 have opposite sign then this time can be greater than both t̃1 and t̃2. Then
the amplitude of the new mode generated by the nonlinear terms is order R4/3v2

0 . Thus
the cut-off for the new mode having larger amplitude than the original two modes is
v0 = O(R−4/3). In order to generate a boot-strapping effect we need to feed this mode
back into another with later blow-up time and so on. If this is possible ad infinitum
(which is not immediately clear) then the threshold is v0 = O(R−4/3). Since v0 varies
on the lengthscale R−1/3 this implies that the threshold norm is O(R−1).

Note that for the route to transition (ii) the size of the oblique-mode perturbation
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was v0 = O(R−4/3), so that the nonlinear terms in (3.23) and (3.24) are indeed negligible
in that case.
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